Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2411.18230v1
- Date: Wed, 27 Nov 2024 11:07:31 GMT
- Title: Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning
- Authors: Xiang Cheng, Zhi Mao, Ying Wang, Wen Wu,
- Abstract summary: We propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs)
We formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time.
We propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time.
- Score: 12.504232513881828
- License:
- Abstract: In this paper, we propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs). Specifically, different computation tasks of CAVs consisting of multiple dependency subtasks are judiciously assigned to nearby CAVs or the base station for promptly completing tasks. Therefore, we formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time. The problem aims at improving the long-term system performance, which is reformulated as a Markov decision process. To solve the problem, we further propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time. A diffusion model-based synthetic experience replay is integrated into the reinforcement learning framework, which can generate sufficient synthetic data in experience replay buffer, thereby significantly accelerating convergence and improving sample efficiency. Simulation results demonstrate the effectiveness of the proposed algorithm on reducing task completion time, comparing to benchmark schemes.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - TS-EoH: An Edge Server Task Scheduling Algorithm Based on Evolution of Heuristic [0.6827423171182154]
This paper introduces a novel task-scheduling approach based on EC theory and Evolutionary algorithms.
Experimental results show that our task-scheduling algorithm outperforms existing and traditional reinforcement learning methods.
arXiv Detail & Related papers (2024-09-04T10:00:32Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - On-edge Multi-task Transfer Learning: Model and Practice with
Data-driven Task Allocation [20.20889051697198]
We show that task allocation with task importance for Multi-task Transfer Learning (MTL) is a variant of the NP-complete Knapsack problem.
We propose a Data-driven Cooperative Task Allocation (DCTA) approach to solve TATIM with high computational efficiency.
Our DCTA reduces 3.24 times of processing time, and saves 48.4% energy consumption compared with the state-of-the-art when solving TATIM.
arXiv Detail & Related papers (2021-07-06T08:24:25Z) - Multi-task Over-the-Air Federated Learning: A Non-Orthogonal
Transmission Approach [52.85647632037537]
We propose a multi-task over-theair federated learning (MOAFL) framework, where multiple learning tasks share edge devices for data collection and learning models under the coordination of a edge server (ES)
Both the convergence analysis and numerical results demonstrate that the MOAFL framework can significantly reduce the uplink bandwidth consumption of multiple tasks without causing substantial learning performance degradation.
arXiv Detail & Related papers (2021-06-27T13:09:32Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
arXiv Detail & Related papers (2020-10-04T02:58:03Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Submodular Meta-Learning [43.15332631500541]
We introduce a discrete variant of the meta-learning framework to improve performance on future tasks.
Our approach aims at using prior data, i.e., previously visited tasks, to train a proper initial solution set.
We show that our framework leads to a significant reduction in computational complexity in solving the new tasks while incurring a small performance loss.
arXiv Detail & Related papers (2020-07-11T21:02:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.