AlphaSharpe: LLM-Driven Discovery of Robust Risk-Adjusted Metrics
- URL: http://arxiv.org/abs/2502.00029v2
- Date: Tue, 04 Feb 2025 14:15:35 GMT
- Title: AlphaSharpe: LLM-Driven Discovery of Robust Risk-Adjusted Metrics
- Authors: Kamer Ali Yuksel, Hassan Sawaf,
- Abstract summary: Financial metrics like the Sharpe ratio are pivotal in evaluating investment performance by balancing risk and return.
Traditional metrics often struggle with robustness and generalization, particularly in dynamic and volatile market conditions.
This paper introduces AlphaSharpe, a novel framework leveraging large language models (LLMs) to iteratively evolve and optimize financial metrics.
- Score: 3.729242965449096
- License:
- Abstract: Financial metrics like the Sharpe ratio are pivotal in evaluating investment performance by balancing risk and return. However, traditional metrics often struggle with robustness and generalization, particularly in dynamic and volatile market conditions. This paper introduces AlphaSharpe, a novel framework leveraging large language models (LLMs) to iteratively evolve and optimize financial metrics to discover enhanced risk-return metrics that outperform traditional approaches in robustness and correlation with future performance metrics by employing iterative crossover, mutation, and evaluation. Key contributions of this work include: (1) a novel use of LLMs to generate and refine financial metrics with implicit domain-specific knowledge, (2) a scoring mechanism to ensure that evolved metrics generalize effectively to unseen data, and (3) an empirical demonstration of 3x predictive power for future risk-returns, and 2x portfolio performance. Experimental results in a real-world dataset highlight the superiority of discovered metrics, making them highly relevant to portfolio managers and financial decision-makers. This framework not only addresses the limitations of existing metrics but also showcases the potential of LLMs in advancing financial analytics, paving the way for informed and robust investment strategies.
Related papers
- The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.
This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.
Our resulting model, LibraChem, outperforms leading LLMs including Claude-3, GPT-4o, and LLaMA-3 by margins of 13.44%, 7.16%, and 7.10% respectively.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
This paper presents a novel approach of measuring risk preference from existing portfolios using inverse optimization.
We demonstrate our methods on real market data that consists of 20 years of asset pricing and 10 years of mutual fund portfolio holdings.
arXiv Detail & Related papers (2020-10-04T21:29:29Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.