Querying Databases with Function Calling
- URL: http://arxiv.org/abs/2502.00032v1
- Date: Thu, 23 Jan 2025 23:09:13 GMT
- Title: Querying Databases with Function Calling
- Authors: Connor Shorten, Charles Pierse, Thomas Benjamin Smith, Karel D'Oosterlinck, Tuana Celik, Erika Cardenas, Leonie Monigatti, Mohd Shukri Hasan, Edward Schmuhl, Daniel Williams, Aravind Kesiraju, Bob van Luijt,
- Abstract summary: We propose a tool definition for database querying that unifies accessing data with search queries, filters, or a combination both.<n>We present a novel pipeline adapting the Gorilla LLM framework to create synthetic database schemas and queries.<n>We find that LLMs are highly effective at utilizing operators on properties, but struggle with text property filters.
- Score: 1.3329663974869035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capabilities of Large Language Models (LLMs) are rapidly accelerating largely thanks to their integration with external tools. Querying databases is among the most effective of these integrations, enabling LLMs to access private or continually updating data. While Function Calling is the most common method for interfacing external tools to LLMs, its application to database querying as a tool has been underexplored. We propose a tool definition for database querying that unifies accessing data with search queries, filters, or a combination both, as well as transforming results with aggregation and groupby operators. To evaluate its effectiveness, we conduct a study with 8 LLMs spanning 5 model families. We present a novel pipeline adapting the Gorilla LLM framework to create synthetic database schemas and queries. We primarily evaluate the models with the Exact Match of predicted and ground truth query APIs. Among the models tested, Claude 3.5 Sonnet achieves the highest performance with an Exact Match score of 74.3%, followed by GPT-4o mini at 73.7%, and GPT-4o at 71.8%. We further breakdown these results per API component utilized and across synthetic use cases. We find that LLMs are highly effective at utilizing operators on boolean properties, but struggle with text property filters. Across use cases we find robust results with the higher performing models such as GPT-4o, but significant performance variance across use cases from lower performing models. We additionally conduct ablation studies exploring the impact of parallel tool calling, adding a rationale as an argument of the tool call, using a separate tool per database collection, and tool calling with structured outputs. Our findings demonstrate the effectiveness of enabling LLMs to query databases with Function Calling. We have open-sourced our experimental code and results at github.com/weaviate/gorilla.
Related papers
- Invocable APIs derived from NL2SQL datasets for LLM Tool-Calling Evaluation [7.260113022127256]
Large language models (LLMs) are routinely deployed as agentic systems with access to tools that interact with live environments to accomplish tasks.<n>In order to create datasets with such characteristics, we explore how existing NL2 datasets can be used to automatically create NL2API datasets.<n>We apply this pipeline to one of the largest NL2 datasets, BIRD, to create a collection of over 2500 APIs that can be served as invocable tools or REST-endpoints.
arXiv Detail & Related papers (2025-06-12T20:17:52Z) - RAISE: Reasoning Agent for Interactive SQL Exploration [47.77323087050061]
We propose a novel framework that unifies schema linking, query generation, and iterative refinement within a single, end-to-end component.<n>Our method emulates how humans answer questions when working with unfamiliar databases.
arXiv Detail & Related papers (2025-06-02T03:07:08Z) - Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
This work explores the feasibility of using synthetic query variants generated by instruction-tuned Large Language Models in data fusion experiments.
We introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques.
Our analysis shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods.
arXiv Detail & Related papers (2024-11-06T12:54:27Z) - ToolACE: Winning the Points of LLM Function Calling [139.07157814653638]
ToolACE is an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data.
We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard.
arXiv Detail & Related papers (2024-09-02T03:19:56Z) - Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks [35.97890508648945]
We introduce the-20B-FUNCTIONCALLING model under an Apache 2.0 license.
The model is trained using a multi-task training approach on seven fundamental tasks.
We show that-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
arXiv Detail & Related papers (2024-06-27T17:47:26Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
We show how to optimize Large Language Models (LLMs) inference for analytical workloads that invoke LLMs within relational queries.
We implement these optimizations in Apache Spark, with vLLM as the model serving backend.
We achieve up to 4.4x improvement in end-to-end latency on a benchmark of diverse LLM-based queries on real datasets.
arXiv Detail & Related papers (2024-03-09T07:01:44Z) - ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models [46.07900122810749]
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging.
We contend that utilizing existing relational databases is a promising approach for constructing benchmarks.
We propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark.
arXiv Detail & Related papers (2024-03-08T12:42:36Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs [84.45284695156771]
API-Bank is a groundbreaking benchmark for tool-augmented Large Language Models.
We develop a run evaluation system consisting of 73 API tools.
We construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains.
arXiv Detail & Related papers (2023-04-14T14:05:32Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.