A Direct Semi-Exhaustive Search Method for Robust, Partial-to-Full Point Cloud Registration
- URL: http://arxiv.org/abs/2502.00115v1
- Date: Fri, 31 Jan 2025 19:03:57 GMT
- Title: A Direct Semi-Exhaustive Search Method for Robust, Partial-to-Full Point Cloud Registration
- Authors: Richard Cheng, Chavdar Papozov, Dan Helmick, Mark Tjersland,
- Abstract summary: Point cloud registration is a problem of finding the rigid transformation that aligns two given point clouds.
Our proposed algorithm, Direct Semi-Exhaustive Search (DSES), efficiently computes the inlier-maximizing translation associated with each rotation.
It then computes the optimal rigid transformation based on any desired distance metric.
DSES outperforms state-of-the-art methods for partial-to-full point cloud registration on the simulated ModelNet40 benchmark.
- Score: 2.18536130465468
- License:
- Abstract: Point cloud registration refers to the problem of finding the rigid transformation that aligns two given point clouds, and is crucial for many applications in robotics and computer vision. The main insight of this paper is that we can directly optimize the point cloud registration problem without correspondences by utilizing an algorithmically simple, yet computationally complex, semi-exhaustive search approach that is very well-suited for parallelization on modern GPUs. Our proposed algorithm, Direct Semi-Exhaustive Search (DSES), iterates over potential rotation matrices and efficiently computes the inlier-maximizing translation associated with each rotation. It then computes the optimal rigid transformation based on any desired distance metric by directly computing the error associated with each transformation candidate $\{R, t\}$. By leveraging the parallelism of modern GPUs, DSES outperforms state-of-the-art methods for partial-to-full point cloud registration on the simulated ModelNet40 benchmark and demonstrates high performance and robustness for pose estimation on a real-world robotics problem (https://youtu.be/q0q2-s2KSuA).
Related papers
- Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision.
Existing methods typically adopt the $ell_p$ type robust norm to measure the alignment error and regularize the smoothness of deformation.
We propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization.
arXiv Detail & Related papers (2022-06-07T16:00:33Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point
Cloud Registration [1.8876415010297891]
We propose a novel method called CPD with Local Surface Geometry (LSG-CPD) for rigid point cloud registration.
Our method adaptively adds different levels of point-to-plane penalization on top of the point-to-point penalization based on the flatness of the local surface.
It is significantly faster than modern implementations of CPD.
arXiv Detail & Related papers (2021-03-28T03:46:41Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matchingbased framework for point cloud registration.
arXiv Detail & Related papers (2021-03-07T04:20:29Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.