論文の概要: Demystifying MPNNs: Message Passing as Merely Efficient Matrix Multiplication
- arxiv url: http://arxiv.org/abs/2502.00140v1
- Date: Fri, 31 Jan 2025 19:48:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:06:21.300977
- Title: Demystifying MPNNs: Message Passing as Merely Efficient Matrix Multiplication
- Title(参考訳): MPNNのデミスティフィケーション: 単純な効率的な行列乗算としてのメッセージパッシング
- Authors: Qin Jiang, Chengjia Wang, Michael Lones, Wei Pang,
- Abstract要約: グラフニューラルネットワーク(GNN)は目覚ましい成功を収めており、その設計は理論的な理解よりも経験的な直観に大きく依存している。
本稿では,3つの基本的側面からGNN行動の包括的解析を行う。
過度なスムースではなく、勾配に関連した問題がスパースグラフの性能に著しく影響を及ぼすことを示した。
また,正規化方式の違いがモデル性能にどのように影響するか,GNNが一様ノード特徴を持つ予測を行うかについても分析する。
- 参考スコア(独自算出の注目度): 4.002604752467421
- License:
- Abstract: While Graph Neural Networks (GNNs) have achieved remarkable success, their design largely relies on empirical intuition rather than theoretical understanding. In this paper, we present a comprehensive analysis of GNN behavior through three fundamental aspects: (1) we establish that \textbf{$k$-layer} Message Passing Neural Networks efficiently aggregate \textbf{$k$-hop} neighborhood information through iterative computation, (2) analyze how different loop structures influence neighborhood computation, and (3) examine behavior across structure-feature hybrid and structure-only tasks. For deeper GNNs, we demonstrate that gradient-related issues, rather than just over-smoothing, can significantly impact performance in sparse graphs. We also analyze how different normalization schemes affect model performance and how GNNs make predictions with uniform node features, providing a theoretical framework that bridges the gap between empirical success and theoretical understanding.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は目覚ましい成功を収めているが、その設計は理論的な理解よりも経験的な直観に大きく依存している。
本稿では,(1) メッセージ・パッシング・ニューラル・ネットワークが反復計算により, 近隣情報を効率的に集約すること, (2) 異なるループ構造が近傍の計算にどのように影響するかを解析すること,(3) 構造-機能的ハイブリッドおよび構造のみのタスク間での振る舞いを調べること,の3つの基本的な側面から, GNN の行動の包括的解析を行う。
より深いGNNでは、過度に滑らかにするのではなく、勾配に関連した問題がスパースグラフの性能に大きく影響することを示した。
また、モデル性能に異なる正規化スキームがどう影響するか、GNNが一様ノード特徴を持つ予測を行う方法について分析し、経験的成功と理論的理解のギャップを埋める理論的枠組みを提供する。
関連論文リスト
- On the Computational Capability of Graph Neural Networks: A Circuit Complexity Bound Perspective [28.497567290882355]
グラフニューラルネットワーク(GNN)は、リレーショナルデータに対する学習と推論の標準的なアプローチとなっている。
本稿では,回路複雑性のレンズによるGNNの計算限界について検討する。
具体的には、共通GNNアーキテクチャの回路複雑性を分析し、定数層、線形またはサブ線形埋め込みサイズ、精度の制約の下で、GNNはグラフ接続やグラフ同型といった重要な問題を解くことができないことを証明している。
論文 参考訳(メタデータ) (2025-01-11T05:54:10Z) - On the Topology Awareness and Generalization Performance of Graph Neural Networks [6.598758004828656]
我々は,GNNのトポロジ的認識をいかなるトポロジ的特徴においても特徴付けるための包括的枠組みを導入する。
本研究は,各ベンチマークデータセットの経路距離を最短とする内在グラフを用いたケーススタディである。
論文 参考訳(メタデータ) (2024-03-07T13:33:30Z) - Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングでますます人気が高まっている。
本稿では,構造変化が発生した場合,GNNの性能が著しく低下することが実験的に確認された。
本稿では,GNNの不変表現を学習するクラスタ情報伝達(CIT)機構を提案する。
論文 参考訳(メタデータ) (2024-03-06T10:36:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Multi-objective Explanations of GNN Predictions [15.563499097282978]
グラフニューラルネットワーク(GNN)は,様々な高精度な予測タスクにおいて最先端のパフォーマンスを達成した。
従来の手法では、より単純なサブグラフを使用して、完全なモデルをシミュレートしたり、予測の原因を特定するために偽造物を使ったりしていた。
論文 参考訳(メタデータ) (2021-11-29T16:08:03Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
グラフニューラルネットワーク(GNN)は、グラフデータと表現学習能力の包括的な関係を統合する。
オーバースムーシングはノードの最終的な表現を識別不能にし、ノード分類とリンク予測性能を劣化させる。
本稿では,TGCL(Topology-Guided Graph Contrastive Layer)を提案する。
論文 参考訳(メタデータ) (2021-10-26T15:56:16Z) - Subgroup Generalization and Fairness of Graph Neural Networks [12.88476464580968]
非IID半教師付き学習環境下でのGNNに対する新しいPAC-Bayesian解析を提案する。
さらに、理論的な観点から、GNNの精度(dis)パリティスタイル(un)フェアネスについて研究する。
論文 参考訳(メタデータ) (2021-06-29T16:13:41Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。