論文の概要: On the Topology Awareness and Generalization Performance of Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2403.04482v2
- Date: Mon, 8 Jul 2024 14:49:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 02:19:20.965940
- Title: On the Topology Awareness and Generalization Performance of Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのトポロジー認識と一般化性能について
- Authors: Junwei Su, Chuan Wu,
- Abstract要約: 我々は,GNNのトポロジ的認識をいかなるトポロジ的特徴においても特徴付けるための包括的枠組みを導入する。
本研究は,各ベンチマークデータセットの経路距離を最短とする内在グラフを用いたケーススタディである。
- 参考スコア(独自算出の注目度): 6.598758004828656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many computer vision and machine learning problems are modelled as learning tasks on graphs where graph neural networks GNNs have emerged as a dominant tool for learning representations of graph structured data A key feature of GNNs is their use of graph structures as input enabling them to exploit the graphs inherent topological properties known as the topology awareness of GNNs Despite the empirical successes of GNNs the influence of topology awareness on generalization performance remains unexplored, particularly for node level tasks that diverge from the assumption of data being independent and identically distributed IID The precise definition and characterization of the topology awareness of GNNs especially concerning different topological features are still unclear This paper introduces a comprehensive framework to characterize the topology awareness of GNNs across any topological feature Using this framework we investigate the effects of topology awareness on GNN generalization performance Contrary to the prevailing belief that enhancing the topology awareness of GNNs is always advantageous our analysis reveals a critical insight improving the topology awareness of GNNs may inadvertently lead to unfair generalization across structural groups which might not be desired in some scenarios Additionally we conduct a case study using the intrinsic graph metric the shortest path distance on various benchmark datasets The empirical results of this case study confirm our theoretical insights Moreover we demonstrate the practical applicability of our framework by using it to tackle the cold start problem in graph active learning
- Abstract(参考訳): グラフニューラルネットワークがグラフ構造データの表現を学習するための支配的なツールとして登場したグラフ上の学習タスクとして、多くのコンピュータビジョンと機械学習の問題がモデル化されている GNNの重要な特徴は、グラフ固有のトポロジ的特性を活用可能な入力としてグラフ構造を使用することである GNNのトポロジ的認識(topology awareness of GNNs)の実証的な成功にもかかわらず、一般的なパフォーマンスに対するトポロジ的認識の影響はいまだ探索されていない。
関連論文リスト
- When Witnesses Defend: A Witness Graph Topological Layer for Adversarial Graph Learning [19.566775406771757]
逆グラフ学習を計算トポロジー、すなわちグラフの永続的ホモロジー表現から新たなツールで橋渡しする。
グラフ上の逆解析において、グラフ全体の位相情報の損失を最小限に抑えながら、グラフの健全な形状特性にのみ焦点をあてることのできる証人複体の概念を導入する。
証人機構を組み込んだWitness Graph Topological Layer (WGTL) を設計し、局所的およびグローバルなトポロジカルグラフの特徴表現を体系的に統合し、その影響を頑健な正規化されたトポロジ的損失によって自動的に制御する。
論文 参考訳(メタデータ) (2024-09-21T14:53:32Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
トポロジー不均衡は、ラベル付きノードの不均一なトポロジー位置によって引き起こされるグラフ固有の不均衡問題である。
PASTEL という新しい位置認識型グラフ構造学習フレームワークを提案する。
私たちの重要な洞察は、より監督的な情報を得るために、同じクラス内のノードの接続性を高めることです。
論文 参考訳(メタデータ) (2022-08-17T14:04:21Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Topological Relational Learning on Graphs [2.4692806302088868]
グラフニューラルネットワーク(GNN)は、グラフ分類と表現学習のための強力なツールとして登場した。
本稿では,GNNに高階グラフ情報を統合可能な新しいトポロジカルリレーショナル推論(TRI)を提案する。
新しいTRI-GNNは、6つの7つのグラフで14の最先端のベースラインを上回り、摂動に対して高い堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2021-10-29T04:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。