Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms
- URL: http://arxiv.org/abs/2502.00234v1
- Date: Sat, 01 Feb 2025 00:25:21 GMT
- Title: Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms
- Authors: Yinuo Ren, Haoxuan Chen, Yuchen Zhu, Wei Guo, Yongxin Chen, Grant M. Rotskoff, Molei Tao, Lexing Ying,
- Abstract summary: Current inference approaches mainly fall into two categories: exact simulation and approximate methods such as $tau$-leaping.
In this work, we advance the latter category by tailoring the first extension of high-order numerical inference schemes to discrete diffusion models.
We rigorously analyze the proposed schemes and establish the second-order accuracy of the $theta$-trapezoidal method in KL divergence.
- Score: 31.42317398879432
- License:
- Abstract: Discrete diffusion models have emerged as a powerful generative modeling framework for discrete data with successful applications spanning from text generation to image synthesis. However, their deployment faces challenges due to the high dimensionality of the state space, necessitating the development of efficient inference algorithms. Current inference approaches mainly fall into two categories: exact simulation and approximate methods such as $\tau$-leaping. While exact methods suffer from unpredictable inference time and redundant function evaluations, $\tau$-leaping is limited by its first-order accuracy. In this work, we advance the latter category by tailoring the first extension of high-order numerical inference schemes to discrete diffusion models, enabling larger step sizes while reducing error. We rigorously analyze the proposed schemes and establish the second-order accuracy of the $\theta$-trapezoidal method in KL divergence. Empirical evaluations on GPT-2 level text and ImageNet-level image generation tasks demonstrate that our method achieves superior sample quality compared to existing approaches under equivalent computational constraints.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - A First-order Generative Bilevel Optimization Framework for Diffusion Models [57.40597004445473]
Diffusion models iteratively denoise data samples to synthesize high-quality outputs.
Traditional bilevel methods fail due to infinite-dimensional probability space and prohibitive sampling costs.
We formalize this challenge as a generative bilevel optimization problem.
Our first-order bilevel framework overcomes the incompatibility of conventional bilevel methods with diffusion processes.
arXiv Detail & Related papers (2025-02-12T21:44:06Z) - Inference-Time Alignment in Diffusion Models with Reward-Guided Generation: Tutorial and Review [59.856222854472605]
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models.
practical applications in fields such as biology often require sample generation that maximizes specific metrics.
We discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, and (3) connections between inference-time algorithms in language models and diffusion models.
arXiv Detail & Related papers (2025-01-16T17:37:35Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.