Mordal: Automated Pretrained Model Selection for Vision Language Models
- URL: http://arxiv.org/abs/2502.00241v1
- Date: Sat, 01 Feb 2025 00:41:29 GMT
- Title: Mordal: Automated Pretrained Model Selection for Vision Language Models
- Authors: Shiqi He, Insu Jang, Mosharaf Chowdhury,
- Abstract summary: Mordal is an automated multimodal model search framework that efficiently finds the best VLM for a user-defined task without manual intervention.
Our evaluation shows that Mordal can find the best VLM for a given problem using up to $8.9times$--$11.6times$ lower GPU hours than grid search.
- Score: 4.339232569078834
- License:
- Abstract: Incorporating multiple modalities into large language models (LLMs) is a powerful way to enhance their understanding of non-textual data, enabling them to perform multimodal tasks. Vision language models (VLMs) form the fastest growing category of multimodal models because of their many practical use cases, including in healthcare, robotics, and accessibility. Unfortunately, even though different VLMs in the literature demonstrate impressive visual capabilities in different benchmarks, they are handcrafted by human experts; there is no automated framework to create task-specific multimodal models. We introduce Mordal, an automated multimodal model search framework that efficiently finds the best VLM for a user-defined task without manual intervention. Mordal achieves this both by reducing the number of candidates to consider during the search process and by minimizing the time required to evaluate each remaining candidate. Our evaluation shows that Mordal can find the best VLM for a given problem using up to $8.9\times$--$11.6\times$ lower GPU hours than grid search. In the process of our evaluation, we have also discovered new VLMs that outperform their state-of-the-art counterparts.
Related papers
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench [17.73279547506514]
We introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning.
MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives.
Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation and cloze tasks, while multimodal unlearning approaches perform better in classification tasks with multimodal inputs.
arXiv Detail & Related papers (2024-10-29T15:07:23Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.
We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.
Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
We develop an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving.
In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations.
arXiv Detail & Related papers (2024-03-28T21:18:33Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
We design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters.
This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks.
It has powerful visual capabilities and can be a good alternative to the ViT-22B.
arXiv Detail & Related papers (2023-12-21T18:59:31Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
arXiv Detail & Related papers (2023-12-20T18:59:58Z) - Vision-Language Models are Zero-Shot Reward Models for Reinforcement Learning [12.628697648945298]
Reinforcement learning (RL) requires either manually specifying a reward function, or learning a reward model from a large amount of human feedback.
We study a more sample-efficient alternative: using pretrained vision-language models (VLMs) as zero-shot reward models (RMs) to specify tasks via natural language.
arXiv Detail & Related papers (2023-10-19T17:17:06Z) - VIMA: General Robot Manipulation with Multimodal Prompts [82.01214865117637]
We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts.
We develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks.
We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively.
arXiv Detail & Related papers (2022-10-06T17:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.