論文の概要: Estimating LLM Uncertainty with Logits
- arxiv url: http://arxiv.org/abs/2502.00290v2
- Date: Tue, 11 Feb 2025 05:26:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:04:59.721758
- Title: Estimating LLM Uncertainty with Logits
- Title(参考訳): 論理によるLLM不確かさの推定
- Authors: Huan Ma, Jingdong Chen, Guangyu Wang, Changqing Zhang,
- Abstract要約: 我々は,大規模言語モデルにおけるトークン固有の不確かさをリアルタイムで推定するために設計された新しいフレームワークであるLogU(Logits-Token Uncertainty)を紹介する。
実験の結果,LogUの有効性と妥当性が明らかとなり,モデル幻覚の課題に対処する上で大きな進展がみられた。
- 参考スコア(独自算出の注目度): 39.145322355643906
- License:
- Abstract: In recent years, Large Language Models (LLMs) have seen remarkable advancements and have been extensively integrated across various fields. Despite their progress, LLMs are prone to hallucinations, producing responses that may not be dependable if the models lack sufficient grounding knowledge. To mitigate this issue, methods for estimating uncertainty have been adopted, with a focus on critical tokens as indicators of reliability. Nevertheless, probability-based approaches have shown limitations in assessing token-level reliability due to the erosion of evidence strength information acquired during training. In this paper, we introduce Logits-induced Token Uncertainty (LogU), a novel framework designed to estimate token-specific uncertainty in LLMs in real time, without the need for multiple sampling rounds. By leveraging evidence modeling for the implementation of LogU, we utilize the derived uncertainty measures to steer downstream tasks. Our experimental findings highlight the substantial effectiveness and potential of LogU, marking a significant advancement in addressing the challenge of model hallucinations.
- Abstract(参考訳): 近年、Large Language Models (LLM) は目覚ましい進歩を遂げ、様々な分野に広く統合されている。
それらの進歩にもかかわらず、LLMは幻覚を起こす傾向があり、モデルに十分な基礎知識がなければ、信頼できない反応を生み出す。
この問題を軽減するため,信頼性の指標として重要なトークンに着目し,不確実性を推定する手法が採用されている。
それにもかかわらず、確率に基づくアプローチは、訓練中に得られた証拠強度情報の浸食によるトークンレベルの信頼性評価の限界を示している。
本稿では,複数のサンプリングラウンドを必要とせず,LLMにおけるトークン固有の不確かさをリアルタイムで推定する新しいフレームワークであるLogits-induced Token Uncertainty(LogU)を紹介する。
LogUの実装にエビデンスモデリングを活用することで、下流タスクのステアリングに導出した不確実性対策を利用する。
実験の結果,LogUの有効性と妥当性が明らかとなり,モデル幻覚の課題に対処する上で大きな進展がみられた。
関連論文リスト
- Do LLMs estimate uncertainty well in instruction-following? [9.081508933326644]
大規模言語モデル(LLM)は、ユーザ指示に従うことができるため、さまざまなドメインにわたるパーソナルAIエージェントとして価値のあるものになり得る。
命令追従の文脈におけるLCMの不確実性推定能力の最初の体系的評価について述べる。
以上の結果から,既存の不確実性手法は,特にモデルが後続の命令で微妙な誤りを犯した場合に困難であることがわかった。
論文 参考訳(メタデータ) (2024-10-18T16:32:10Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
論文 参考訳(メタデータ) (2024-08-20T09:42:26Z) - MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty [10.154013836043816]
我々は,世界知識,数学的推論,コモンセンス推論タスクからなるMulti-Answer Question Answering データセット MAQA を提案する。
その結果,データ不確実性の下でも,エントロピーと一貫性に基づく手法がモデルの不確実性をよく推定できることが示唆された。
我々は、我々の観察が、現実的な環境での不確実性定量化に関する今後の研究の道を開くと信じている。
論文 参考訳(メタデータ) (2024-08-13T11:17:31Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
LLMにおける不確実性推定と校正の問題について検討する。
LLMの応答の不確かさを推定するためにラベル付きデータセットを利用する教師付きアプローチを提案する。
本手法は,ブラックボックス,グレイボックス,ホワイトボックスなど,モデルアクセシビリティの異なるレベルに適応し,実装が容易である。
論文 参考訳(メタデータ) (2024-04-24T17:10:35Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Look Before You Leap: An Exploratory Study of Uncertainty Measurement for Large Language Models [15.735715641327836]
本研究では,不確実性のレンズを用いたLarge Language Models(LLM)のリスク評価について検討する。
本研究は,LLMの不確かさ・非実効性予測に対する不確実性推定の有効性を検証した。
我々の研究から得た洞察は、信頼性の高いLCMの設計と開発に光を当てた。
論文 参考訳(メタデータ) (2023-07-16T08:28:04Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。