Physics-Inspired Distributed Radio Map Estimation
- URL: http://arxiv.org/abs/2502.00319v1
- Date: Sat, 01 Feb 2025 04:58:17 GMT
- Title: Physics-Inspired Distributed Radio Map Estimation
- Authors: Dong Yang, Yue Wang, Songyang Zhang, Yingshu Li, Zhipeng Cai,
- Abstract summary: We propose a physics-inspired distributed radio map estimation (RME) solution in the absence of landscaping information.
A global autoencoder module is shared among clients to capture the common pathloss influence on radio propagation pattern, while a client-specific autoencoder module focuses on learning the individual features produced by local shadowing effects.
- Score: 28.88538563486102
- License:
- Abstract: To gain panoramic awareness of spectrum coverage in complex wireless environments, data-driven learning approaches have recently been introduced for radio map estimation (RME). While existing deep learning based methods conduct RME given spectrum measurements gathered from dispersed sensors in the region of interest, they rely on centralized data at a fusion center, which however raises critical concerns on data privacy leakages and high communication overloads. Federated learning (FL) enhance data security and communication efficiency in RME by allowing multiple clients to collaborate in model training without directly sharing local data. However, the performance of the FL-based RME can be hindered by the problem of task heterogeneity across clients due to their unavailable or inaccurate landscaping information. To fill this gap, in this paper, we propose a physics-inspired distributed RME solution in the absence of landscaping information. The main idea is to develop a novel distributed RME framework empowered by leveraging the domain knowledge of radio propagation models, and by designing a new distributed learning approach that splits the entire RME model into two modules. A global autoencoder module is shared among clients to capture the common pathloss influence on radio propagation pattern, while a client-specific autoencoder module focuses on learning the individual features produced by local shadowing effects from the unique building distributions in local environment. Simulation results show that our proposed method outperforms the benchmarks in achieving higher performance.
Related papers
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - CoRAST: Towards Foundation Model-Powered Correlated Data Analysis in Resource-Constrained CPS and IoT [16.821900475733102]
Foundation models (FMs) can harness distributed and diverse environmental data by leveraging prior knowledge.
We introduce CoRAST, a novel learning framework that utilizes FMs for enhanced analysis of distributed, correlated heterogeneous data.
Our evaluation on real-world weather dataset demonstrates CoRAST's ability to exploit correlated heterogeneous data.
arXiv Detail & Related papers (2024-03-27T11:11:06Z) - RadioGAT: A Joint Model-based and Data-driven Framework for Multi-band Radiomap Reconstruction via Graph Attention Networks [36.8227064106456]
Multi-band radiomap reconstruction (MB-RMR) is a key component in wireless communications for tasks such as spectrum management and network planning.
Traditional machine-learning-based MB-RMR methods, which rely heavily on simulated data, face significant deployment challenges.
This study presents RadioGAT, a novel framework based on Graph Attention Network (GAT) tailored for MB-RMR within a single area.
arXiv Detail & Related papers (2024-03-25T03:23:10Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Spatial Attention-based Distribution Integration Network for Human Pose
Estimation [0.8052382324386398]
We present the Spatial Attention-based Distribution Integration Network (SADI-NET) to improve the accuracy of localization.
Our network consists of three efficient models: the receptive fortified module (RFM), spatial fusion module (SFM), and distribution learning module (DLM)
Our model obtained a remarkable $92.10%$ percent accuracy on the MPII test dataset, demonstrating significant improvements over existing models and establishing state-of-the-art performance.
arXiv Detail & Related papers (2023-11-09T12:43:01Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device.
Current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases.
We propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup.
arXiv Detail & Related papers (2021-07-01T06:14:51Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.