論文の概要: OneForecast: A Universal Framework for Global and Regional Weather Forecasting
- arxiv url: http://arxiv.org/abs/2502.00338v1
- Date: Sat, 01 Feb 2025 06:49:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:46.836090
- Title: OneForecast: A Universal Framework for Global and Regional Weather Forecasting
- Title(参考訳): OneForecast: グローバルおよび地域気象予報のためのユニバーサルフレームワーク
- Authors: Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Chen, Yibo Yan, Qingsong Wen, Xuming Hu, Kun Wang, Jiahao Wu, Qing Li, Hui Xiong, Xiaomeng Huang,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)に基づくグローバル地域別ネスト気象予報フレームワークを提案する。
動的システムパースペクティブとマルチグリッド理論を組み合わせることで、マルチスケールグラフ構造を構築し、ターゲット領域を密度化し、局所的な高周波特性を捉える。
高分解能な地域予測のために,境界情報損失を軽減するニューラルネットワークネストグリッド法を提案する。
- 参考スコア(独自算出の注目度): 44.203835175341
- License:
- Abstract: Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning methods have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework based on graph neural networks (GNNs). By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive information propagation mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that the proposed method performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions (e.g., typhoons), significantly improving forecast accuracy. Our codes are available at https://github.com/YuanGao-YG/OneForecast.
- Abstract(参考訳): 正確な天気予報は防災、農業計画、水資源管理に重要である。
従来の数値気象予測法(NWP)は、物理的に解釈可能な高精度な予測を提供するが、計算コストが高く、急速に成長する歴史的データを十分に活用できない。
近年、深層学習手法は天気予報に大きな進歩を遂げているが、地球と地域の高解像度予測のバランス、極端な事象予測の過度な平滑化、システムモデリングの不十分といった課題が残っている。
これらの問題に対処するため,グラフニューラルネットワーク(GNN)に基づくグローバルなネスト型気象予報フレームワークを提案する。
動的システムパースペクティブとマルチグリッド理論を組み合わせることで、マルチスケールグラフ構造を構築し、ターゲット領域を密度化し、局所的な高周波特性を捉える。
適応的な情報伝達機構を導入し、動的ゲーティングユニットを用いてノードとエッジ機能を深く統合し、より正確なイベント予測を行う。
高分解能な地域予測のために,境界情報損失を軽減するニューラルネットワークネストグリッド法を提案する。
実験結果から,提案手法はグローバル・地域規模,短期・長期予測,特に極端事象予測(台風など)において優れた性能を示し,予測精度を著しく向上させた。
私たちのコードはhttps://github.com/YuanGao-YG/OneForecast.comで公開されています。
関連論文リスト
- Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
機械学習や数値気象モデルによる天気予報製品は、現在、グローバル・レギュラー・グリッドで作成されている。
本研究では、異種グラフニューラルネットワーク(GNN)をエンドツーエンドにトレーニングし、グリッド化された予測をダウンスケールして、関心のある場所をオフグリッドする。
提案手法は,グローバルな大規模気象モデルと局所的高精度な予測とのギャップを橋渡しして,局所的な意思決定に役立てることができることを示す。
論文 参考訳(メタデータ) (2024-10-16T18:25:43Z) - FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weatherは、複数の衛星のデータと類似した機械学習の天気予報システムである。
FuXi 気象は、中央アフリカなどの観測圏において、ECMWF HRES を一貫して上回っている。
論文 参考訳(メタデータ) (2024-08-10T07:42:01Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。