論文の概要: Actor Critic with Experience Replay-based automatic treatment planning for prostate cancer intensity modulated radiotherapy
- arxiv url: http://arxiv.org/abs/2502.00346v1
- Date: Sat, 01 Feb 2025 07:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:27.209821
- Title: Actor Critic with Experience Replay-based automatic treatment planning for prostate cancer intensity modulated radiotherapy
- Title(参考訳): 前立腺癌強度変調放射線治療における経験的リプレイに基づく自動治療計画を用いたアクター批判
- Authors: Md Mainul Abrar, Parvat Sapkota, Damon Sprouts, Xun Jia, Yujie Chi,
- Abstract要約: 既存のモデルは大規模で高品質なデータセットを必要とし、普遍的な適用性に欠ける。
我々は、効率的な訓練、広範囲な適用性、および敵対的攻撃に対する自動治療計画のためのポリシーベースのDRLエージェントを開発した。
- 参考スコア(独自算出の注目度): 1.5798514473558434
- License:
- Abstract: Background: Real-time treatment planning in IMRT is challenging due to complex beam interactions. AI has improved automation, but existing models require large, high-quality datasets and lack universal applicability. Deep reinforcement learning (DRL) offers a promising alternative by mimicking human trial-and-error planning. Purpose: Develop a stochastic policy-based DRL agent for automatic treatment planning with efficient training, broad applicability, and robustness against adversarial attacks using Fast Gradient Sign Method (FGSM). Methods: Using the Actor-Critic with Experience Replay (ACER) architecture, the agent tunes treatment planning parameters (TPPs) in inverse planning. Training is based on prostate cancer IMRT cases, using dose-volume histograms (DVHs) as input. The model is trained on a single patient case, validated on two independent cases, and tested on 300+ plans across three datasets. Plan quality is assessed using ProKnow scores, and robustness is tested against adversarial attacks. Results: Despite training on a single case, the model generalizes well. Before ACER-based planning, the mean plan score was 6.20$\pm$1.84; after, 93.09% of cases achieved a perfect score of 9, with a mean of 8.93$\pm$0.27. The agent effectively prioritizes optimal TPP tuning and remains robust against adversarial attacks. Conclusions: The ACER-based DRL agent enables efficient, high-quality treatment planning in prostate cancer IMRT, demonstrating strong generalizability and robustness.
- Abstract(参考訳): 背景: IMRTにおけるリアルタイム処理計画は, 複雑なビーム相互作用のため困難である。
AIは自動化を改善したが、既存のモデルは大規模で高品質なデータセットを必要とし、普遍的な適用性に欠ける。
深層強化学習(DRL)は、人間の試行錯誤計画を模倣することで、有望な代替手段を提供する。
目的:FGSM(Fast Gradient Sign Method)を用いて,効率的なトレーニング,広範な適用性,敵攻撃に対する堅牢性を備えた,確率的ポリシーに基づくDRLエージェントの開発。
メソッド: Actor-Critic with Experience Replay (ACER)アーキテクチャを使用して、エージェントは、逆計画における治療計画パラメータ(TPP)を調整する。
トレーニングは前立腺癌IMRT症例に基づいており、DVHを入力として使用する。
このモデルは、単一のケースでトレーニングされ、2つの独立したケースで検証され、3つのデータセットで300以上のプランでテストされる。
計画品質はProKnowスコアを用いて評価され、敵の攻撃に対して堅牢性がテストされる。
結果: 1つのケースでのトレーニングにもかかわらず、モデルはうまく一般化される。
ACERが計画する前の平均プランスコアは6.20$\pm$1.84で、その後93.09%の患者が9点、平均は8.93$\pm$0.27点に達した。
エージェントは最適なTPPチューニングを効果的に優先順位付けし、敵攻撃に対して堅牢である。
結論: ACER-based DRL agent は前立腺癌 IMRT の効率的で高品質な治療計画を可能にし, 高い一般化性と堅牢性を示す。
関連論文リスト
- Automating High Quality RT Planning at Scale [4.660056689223253]
高品質な処理計画を生成するスケーラブルなソリューションであるAIRTP(Automated Iterative RT Planning)システムを紹介した。
当社のAIRTPパイプラインは,OAR(Organ-at-risk Contouring),ヘルパー構造生成,ビーム設定,最適化,計画品質改善など,臨床ガイドラインに準拠し,重要なステップを自動化します。
計画品質の比較分析により、自動パイプラインが手作業で生成されたものと同等の品質の処理計画を生成することが明らかになった。
論文 参考訳(メタデータ) (2025-01-21T00:44:18Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - Preserving privacy in domain transfer of medical AI models comes at no
performance costs: The integral role of differential privacy [5.025818976218807]
DP-DT(DP-enhanced domain transfer)は, 心肥大, 胸水, 肺炎, 気腫, 健常者の診断に有効であった。
その結果,DP-DTは極めて高いプライバシレベルであっても,非DP-DTと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-06-10T18:41:50Z) - GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks [73.88590165742721]
本稿では,限られた訓練データの下で補助的なタスクを活用する新しい対人訓練手法を提案する。
本手法は, 対戦学習の最小値最適化において, シングルタスクモデルをマルチタスクモデルに拡張する。
我々は、ガイド付きマルチタスク学習が、モデルロバスト性の境界をさらに推し進めるために、実践的で有望な方法であることを実証する。
論文 参考訳(メタデータ) (2023-02-06T16:23:24Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - A feasibility study of a hyperparameter tuning approach to automated
inverse planning in radiotherapy [68.8204255655161]
本研究の目的は,計画品質を保ちながら,逆計画プロセスを自動化し,積極的な計画時間を短縮することである。
本研究では, 線量パラメータの選択, ランダムおよびベイズ探索法, ユーティリティ関数形式が計画時間と計画品質に及ぼす影響について検討した。
100個のサンプルを用いて良好な計画品質が得られ、平均計画時間は2.3時間であった。
論文 参考訳(メタデータ) (2021-05-14T18:37:00Z) - Joint Registration and Segmentation via Multi-Task Learning for Adaptive
Radiotherapy of Prostate Cancer [3.0929226049096217]
マルチタスク学習設定による共同問題として登録とセグメンテーションを定式化する。
このアプローチは、前立腺癌に対する適応画像誘導放射線療法の文脈で検討する。
論文 参考訳(メタデータ) (2021-05-05T02:45:49Z) - Rapid treatment planning for low-dose-rate prostate brachytherapy with
TP-GAN [9.064664319018064]
低用量前立腺切断療法 (LDR-PB) の治療計画では, 前立腺に最小限の所定の用量を与える埋込み可能な放射性種子の配置を目標としている。
医師の視点からインプラントを「受け入れ可能」とみなすのではなく、この線量基準を満たす複数の種子の配置があります。
LDR-PBデータの大規模プールから学習するモデルをトレーニングすることで、このばらつきを低減する手法を提案する。
論文 参考訳(メタデータ) (2021-03-18T03:02:45Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSimは、ウイルス学、病気の進行、社会的接触ネットワーク、移動パターンに基づくエージェントベースのコンパートメンタルシミュレータである。
1)バイナリテスト結果に基づいてバイナリレコメンデーションを割り当てる標準バイナリコンタクトトレース (BCT) と,2) 多様な特徴に基づいてグレードレベルのレコメンデーションを割り当てる特徴ベースコンタクトトレース (FCT) のルールベースの手法である。
論文 参考訳(メタデータ) (2020-10-30T00:47:01Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。