論文の概要: HERA: Improving Long Document Summarization using Large Language Models with Context Packaging and Reordering
- arxiv url: http://arxiv.org/abs/2502.00448v1
- Date: Sat, 01 Feb 2025 14:55:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:00:32.855451
- Title: HERA: Improving Long Document Summarization using Large Language Models with Context Packaging and Reordering
- Title(参考訳): HERA:コンテキストパッケージとリオーダーによる大規模言語モデルによる長期文書要約の改善
- Authors: Taiji Li, Hao Chen, Fei Yu, Yin Zhang,
- Abstract要約: HERAと呼ばれる新しい要約生成フレームワークを提案する。
まず、その意味構造によって長い文書をセグメンテーションし、同じ事象に関するテキストセグメントを検索し、最後にそれらを並べ替えて入力コンテキストを形成する。
実験の結果,HERAはROUGE,BERTScore,忠実度測定において基礎モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 6.876612430571396
- License:
- Abstract: Despite the rapid growth of context length of large language models (LLMs) , LLMs still perform poorly in long document summarization. An important reason for this is that relevant information about an event is scattered throughout long documents, and the messy narrative order impairs the accurate understanding and utilization of LLMs for long documents. To address these issues, we propose a novel summary generation framework, called HERA. Specifically, we first segment a long document by its semantic structure and retrieve text segments about the same event, and finally reorder them to form the input context. We evaluate our approach on two long document summarization datasets. The experimental results show that HERA outperforms foundation models in ROUGE, BERTScore and faithfulness metrics, while HERA does not require additional fine-tuning and resources.
- Abstract(参考訳): 大規模言語モデル (LLM) の文脈長の急激な増加にもかかわらず、LLM は長い文書要約では依然として不十分である。
重要な理由は、イベントに関する関連情報が長い文書に散らばっており、乱雑な物語の順序は長い文書に対するLLMの正確な理解と利用を損なうためである。
これらの課題に対処するために,HERAと呼ばれる新しい要約生成フレームワークを提案する。
具体的には、まずその意味構造によって長い文書をセグメンテーションし、同じ事象に関するテキストセグメントを検索し、最後にそれらを並べ替えて入力コンテキストを形成する。
我々は2つの長い文書要約データセットに対するアプローチを評価する。
実験の結果, HERAはROUGE, BERTScore, 忠実度といった基礎モデルよりも優れており, HERAは詳細な調整や資源を必要としないことがわかった。
関連論文リスト
- LLM$\times$MapReduce: Simplified Long-Sequence Processing using Large Language Models [73.13933847198395]
本稿では,文書理解を包括的に行うための分割・対数戦略を利用して,長文処理のための学習自由フレームワークを提案する。
提案された LLM$times$MapReduce フレームワークは、ドキュメント全体を LLM が読み取るためにいくつかのチャンクに分割し、中間回答を集約して最終的な出力を生成する。
論文 参考訳(メタデータ) (2024-10-12T03:13:44Z) - SEGMENT+: Long Text Processing with Short-Context Language Models [53.40059130780192]
SEGMENT+は、LMが限られたコンテキストウィンドウ内で拡張入力を効率的に処理できるフレームワークである。
SEGMENT+は構造化音符とフィルタリングモジュールを使用して情報の流れを管理し、制御可能かつ解釈可能なシステムを実現する。
論文 参考訳(メタデータ) (2024-10-09T03:40:22Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
時間的複合イベント(TCE)として、長い期間にわたって多くのニュース記事から構成される複合イベントについて述べる。
本稿では,Large Language Models (LLMs) を用いて,TCE内のイベントチェーンを系統的に抽出し,解析する手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:42:17Z) - Quest: Query-centric Data Synthesis Approach for Long-context Scaling of Large Language Model [22.07414287186125]
Questはクエリ中心のデータメソッドで、セマンティックに関連があるが多様なドキュメントを集約する。
生成モデルを使用して、ドキュメント毎の潜在的なクエリを予測し、同様のクエリとキーワードでドキュメントをグループ化する。
実験では、Questの長文タスクにおける優れたパフォーマンスを示し、最大100万トークンのコンテキスト長で顕著な結果が得られる。
論文 参考訳(メタデータ) (2024-05-30T08:50:55Z) - PEARL: Prompting Large Language Models to Plan and Execute Actions Over
Long Documents [78.27865456183397]
長い文書に対する推論を改善するためのフレームワークであるPEARLを提案する。
PEARLの各ステージは、最小限の人間の入力でゼロショットまたは少数ショットのプロンプトによって実装される。
PEARLをQuALITYデータセットの挑戦的なサブセットで評価し、長い物語テキストに対して複雑な推論を必要とする質問を含む。
論文 参考訳(メタデータ) (2023-05-23T23:06:04Z) - DAPR: A Benchmark on Document-Aware Passage Retrieval [57.45793782107218]
我々は,このタスクemphDocument-Aware Passage Retrieval (DAPR)を提案する。
State-of-The-Art(SoTA)パスレトリバーのエラーを分析しながら、大きなエラー(53.5%)は文書コンテキストの欠如に起因する。
提案するベンチマークにより,検索システムの開発・比較を今後行うことができる。
論文 参考訳(メタデータ) (2023-05-23T10:39:57Z) - Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues
and Documents [13.755637074366813]
SummNは、典型的な事前訓練されたLMの最大文脈長よりも長いテキストを入力するための、シンプルで柔軟で効果的な多段階フレームワークである。
LMコンテキストサイズを固定したままステージ数を調整することで任意の長さの入力テキストを処理できる。
実験の結果,SummNは従来の最先端手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-10-16T06:19:54Z) - On Generating Extended Summaries of Long Documents [16.149617108647707]
本稿では,長論文の拡張要約を生成する新しい手法を提案する。
本手法は,文書の階層構造を利用して抽出要約モデルに組み込む。
分析の結果,提案手法は,要約文に好適な抽出確率分布を調整できることが示唆された。
論文 参考訳(メタデータ) (2020-12-28T08:10:28Z) - Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical
Encoder for Long-Form Document Matching [28.190001111358438]
長文文書マッチングのためのシームズ多層変換器を用いたSMITHを提案する。
我々のモデルには、より長いテキスト入力に自己注意モデルを適用するためのいくつかの革新が含まれている。
われわれはウィキペディアベースのベンチマークデータセット、コード、トレーニング済みのチェックポイントをオープンソース化し、長文文書マッチングの今後の研究を加速する。
論文 参考訳(メタデータ) (2020-04-26T07:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。