論文の概要: Convolutional Fourier Analysis Network (CFAN): A Unified Time-Frequency Approach for ECG Classification
- arxiv url: http://arxiv.org/abs/2502.00497v3
- Date: Wed, 14 May 2025 00:45:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 15:30:05.476527
- Title: Convolutional Fourier Analysis Network (CFAN): A Unified Time-Frequency Approach for ECG Classification
- Title(参考訳): 畳み込みフーリエ解析ネットワーク(CFAN):ECG分類のための統一時間周波数アプローチ
- Authors: Sam Jeong, Hae Yong Kim,
- Abstract要約: 本研究では、時間周波数解析を統一する新しいアーキテクチャである畳み込みフーリエ解析ネットワーク(CFAN)を紹介する。
我々は、スペクトルベース2D CNN(SPECT)、1D CNN(CNN1D)、フーリエベース1D CNN(FFT1D)、フーリエ分析ネットワーク(CNN1D-FAN)の統合CNN1Dの4つのベンチマークに対してCFANを評価する。
CFANは最先端のパフォーマンスを達成し、98.95%(MIT-BIH)、96.83%(ECG-ID)、95.01%(Ap)と競合する全ての手法を上回りました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has revolutionized biomedical signal analysis, particularly in electrocardiogram (ECG) classification. While convolutional neural networks (CNNs) excel at automatic feature extraction, the optimal integration of time- and frequency-domain information remains unresolved. This study introduces the Convolutional Fourier Analysis Network (CFAN), a novel architecture that unifies time-frequency analysis by embedding Fourier principles directly into CNN layers. We evaluate CFAN against four benchmarks - spectrogram-based 2D CNN (SPECT); 1D CNN (CNN1D); Fourier-based 1D CNN (FFT1D); and CNN1D with integrated Fourier Analysis Network (CNN1D-FAN) - across three ECG tasks: arrhythmia classification (MIT-BIH), identity recognition (ECG-ID), and apnea detection (Apnea-ECG). CFAN achieved state-of-the-art performance, surpassing all competing methods with accuracies of 98.95% (MIT-BIH), 96.83% (ECG-ID), and 95.01% (Apnea-ECG). Notably, on ECG-ID and Apnea-ECG, CFAN demonstrated statistically significant improvements over the second-best method (CNN1D-FAN, $p \leq 0.02$), further validating its superior performance. Key innovations include CONV-FAN blocks that combine sine, cosine and GELU activations in convolutional layers to capture periodic features and joint time-frequency learning without spectrogram conversion. Our results highlight CFAN's potential for broader biomedical and signal classification applications.
- Abstract(参考訳): 機械学習は、特に心電図(ECG)分類において、生体医学的信号分析に革命をもたらした。
畳み込みニューラルネットワーク(CNN)は自動特徴抽出において優れているが、時間領域と周波数領域の情報の統合は未解決のままである。
本研究では,Fourier の原理を直接 CNN 層に埋め込むことにより,時間周波数解析を統一する新しいアーキテクチャである Convolutional Fourier Analysis Network (CFAN) を紹介する。
CFANをスペクトルベース2D CNN(SPECT)、1D CNN(CNN1D)、フーリエベース1D CNN(FFT1D)、CNN1Dと統合されたフーリエ分析ネットワーク(CNN1D-FAN)の4つのベンチマークと比較し、不整脈分類(MIT-BIH)、アイデンティティ認識(ECG-ID)、無呼吸検出(Apnea-ECG)の3つのECGタスクに対して評価した。
CFANは最先端のパフォーマンスを達成し、98.95%(MIT-BIH)、96.83%(ECG-ID)、95.01%(Apnea-ECG)と競合する全ての手法を上回った。
特にECG-IDとApnea-ECGでは、CFANは第2ベスト法(CNN1D-FAN, $p \leq 0.02$)よりも統計的に有意な改善を示し、さらに優れた性能を示した。
主要な革新としては、シン、コサイン、GELUの活性化を畳み込み層に組み合わせたCONV-FANブロックがある。
本研究は,生物医学・信号分類分野におけるCFANの可能性を明らかにするものである。
関連論文リスト
- xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM [14.02717596836022]
本稿では,ECG信号のマルチラベル分類手法であるxLSTM-ECGを提案する。
我々の知る限り、この研究は、マルチラベルECG分類に特化して適応したxLSTMモジュールの設計と応用を表すものである。
論文 参考訳(メタデータ) (2025-04-14T16:12:46Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
本稿では,診療所における低コストシステムを用いた心疾患の迅速かつ効率的な診断方法を提案する。
LSCNネットワークによる心臓音の総合的分類精度は96%以上である。
論文 参考訳(メタデータ) (2024-07-15T13:02:54Z) - Towards small and accurate convolutional neural networks for acoustic
biodiversity monitoring [0.0]
CNNは推論時に高速で、優れた分類性能を実現する。
熱帯雨林の生態系からの録音が使用された。
RF持続時間は分類性能の主要な要因であった。
論文 参考訳(メタデータ) (2023-12-06T18:34:01Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Spectral Cross-Domain Neural Network with Soft-adaptive Threshold
Spectral Enhancement [12.837935554250409]
スペクトルクロスドメインニューラルネットワーク(SCDNN)という新しいディープラーニングモデルを提案する。
同時に、ニューラルネットワーク内のスペクトル領域と時間領域に埋め込まれたキー情報を明らかにする。
提案するSCDNNは、パブリックECGデータベースの textitPTB-XL と textitMIT-BIH に実装されたいくつかの分類タスクでテストされる。
論文 参考訳(メタデータ) (2023-01-10T14:23:43Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
本稿では、動的ソースルーティング(DSR)とエネルギーリンク品質(REL)に基づくIoTヘルスケアプラットフォームのためのルーティングシステムを提案する。
Deep-ECGは、重要な特徴を抽出するためにディープCNNを使用し、単純かつ高速な距離関数を用いて比較する。
その結果,提案手法は分類精度において他よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-08T13:37:23Z) - Time-Frequency Analysis based Deep Interference Classification for
Frequency Hopping System [2.8123846032806035]
干渉分類は、認証された通信システムを保護する上で重要な役割を果たす。
本稿では,周波数ホッピング通信システムにおける干渉分類問題について述べる。
周波数ホッピング系における多重干渉の可能性を考慮すると、線形および双線形変換に基づく複合時間周波数解析法が採用されている。
論文 参考訳(メタデータ) (2021-07-21T14:22:40Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
ECG信号分類タスクのためのマルチスケール深部残差ネットワークを開発しています。
我々は,マルチリード信号を2次元行列として扱うことを提案する。
提案モデルは,mit-bihデータセットでは99.2%,alibabaデータセットでは89.4%のf1-scoreを実現する。
論文 参考訳(メタデータ) (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
心電図(ECG)信号から心疾患を視覚的に検出することは困難である。
自動心電図信号検出システムを実装することにより,不整脈の診断精度を向上させることができる。
論文 参考訳(メタデータ) (2020-11-12T04:20:56Z) - Frequency Gating: Improved Convolutional Neural Networks for Speech
Enhancement in the Time-Frequency Domain [37.722450363816144]
本稿では、CNNのカーネルの乗算重みを計算するために、周波数ゲーティングと呼ばれる手法を提案する。
スキップ接続を用いたオートエンコーダニューラルネットワークの実験では、局所的および周波数的にゲーティングの両方がベースラインを上回っている。
拡張短時間客観的インテリジェンススコア(ESTOI)に基づく損失関数を導入し、標準平均二乗誤差(MSE)損失関数より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-08T22:04:00Z) - A Two-Stage Approach to Device-Robust Acoustic Scene Classification [63.98724740606457]
デバイスロバスト性を改善するために,完全畳み込みニューラルネットワーク(CNN)に基づく2段階システムを提案する。
以上の結果から,提案したASCシステムにより,開発環境における最先端の精度が得られた。
クラスアクティベーションマッピングを用いたニューラルサリエンシ解析により、モデルによって学習されたパターンに関する新たな洞察が得られる。
論文 参考訳(メタデータ) (2020-11-03T03:27:18Z) - A Computationally Efficient Multiclass Time-Frequency Common Spatial
Pattern Analysis on EEG Motor Imagery [164.93739293097605]
共通空間パターン(CSP)は脳波(EEG)運動画像(MI)の一般的な特徴抽出法である
本研究では,従来のCSPアルゴリズムを改良し,マルチクラスMI分類精度を改善し,計算処理の効率化を図る。
論文 参考訳(メタデータ) (2020-08-25T18:23:50Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。