論文の概要: MetaOpenFOAM 2.0: Large Language Model Driven Chain of Thought for Automating CFD Simulation and Post-Processing
- arxiv url: http://arxiv.org/abs/2502.00498v1
- Date: Sat, 01 Feb 2025 17:31:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:23.853007
- Title: MetaOpenFOAM 2.0: Large Language Model Driven Chain of Thought for Automating CFD Simulation and Post-Processing
- Title(参考訳): MetaOpenFOAM 2.0:CFDシミュレーションと後処理を自動化するための思考の言語モデル駆動チェーン
- Authors: Yuxuan Chen, Xu Zhu, Hua Zhou, Zhuyin Ren,
- Abstract要約: 提案するMetaOpenFOAM 2.0は,COT(Chain of Thought)分解と反復検証を利用して,非専門家ユーザに対するアクセシビリティを向上させる。
シミュレーション(流動、熱伝達、燃焼)と後処理(抽出、可視化)をカバーする新しいベンチマークで、MetaOpenFOAM 2.0は実行可能性スコアが6.3/7、通過率は86.9%に達した。
アブレーション試験では,COTによる分解と反復精製によりタスク性能が大幅に向上した。
- 参考スコア(独自算出の注目度): 11.508919041921942
- License:
- Abstract: Computational Fluid Dynamics (CFD) is widely used in aerospace, energy, and biology to model fluid flow, heat transfer, and chemical reactions. While Large Language Models (LLMs) have transformed various domains, their application in CFD remains limited, particularly for complex tasks like post-processing. To bridge this gap, we introduce MetaOpenFOAM 2.0, which leverages Chain of Thought (COT) decomposition and iterative verification to enhance accessibility for non-expert users through natural language inputs. Tested on a new benchmark covering simulation (fluid flow, heat transfer, combustion) and post-processing (extraction, visualization), MetaOpenFOAM 2.0 achieved an Executability score of 6.3/7 and a pass rate of 86.9%, significantly outperforming MetaOpenFOAM 1.0 (2.1/7, 0%). Additionally, it proved cost-efficient, averaging $0.15 per case. An ablation study confirmed that COT-driven decomposition and iterative refinement substantially improved task performance. Furthermore, scaling laws showed that increasing COT steps enhanced accuracy while raising token usage, aligning with LLM post-training scaling trends. These results highlight the transformative potential of LLMs in automating CFD workflows for industrial and research applications. Code is available at https://github.com/Terry-cyx/MetaOpenFOAM
- Abstract(参考訳): 計算流体力学(CFD)は、流体の流れ、熱伝達、化学反応をモデル化するために航空宇宙、エネルギー、生物学で広く用いられている。
LLM(Large Language Models)は様々なドメインを変換しているが、CFDでの応用は、特に後処理のような複雑なタスクに限られている。
このギャップを埋めるためにMetaOpenFOAM 2.0を導入する。これは思考の連鎖(COT)分解と反復検証を利用して、自然言語入力による非専門家ユーザへのアクセシビリティを高める。
シミュレーション(流動、熱伝達、燃焼)と後処理(抽出、可視化)に関する新しいベンチマークで、MetaOpenFOAM 2.0は実行可能性スコア6.3/7、パスレート86.9%を達成し、MetaOpenFOAM 1.0(2.1/7,0%)を著しく上回った。
さらに、コスト効率が立証され、1ケースあたり平均0.15ドルであった。
アブレーション試験では,COTによる分解と反復精製によりタスク性能が大幅に向上した。
さらに、スケーリング法則により、COTステップの増加はトークン使用率を高めながら精度を高め、LLM後のスケーリングトレンドと整合することを示した。
これらの結果は,産業・研究用CFDワークフローの自動化におけるLLMの変革的ポテンシャルを浮き彫りにしている。
コードはhttps://github.com/Terry-cyx/MetaOpenFOAMで入手できる。
関連論文リスト
- WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。
最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。
LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。
論文 参考訳(メタデータ) (2024-11-08T09:58:02Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAMは、新しいマルチエージェントコラボレーションフレームワークである。
入力として自然言語のみを用いてCFDシミュレーションタスクを完了することを目的としている。
MetaGPTのアセンブリラインパラダイムのパワーを利用する。
論文 参考訳(メタデータ) (2024-07-31T04:01:08Z) - TernaryLLM: Ternarized Large Language Model [29.29122031050894]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて顕著なパフォーマンスを達成した。
本稿では、Dual Learnable Ternarization (DLT)を導入し、スケールとシフトの両方を学習可能にする。
また、極低ビット量子化で失われた情報を復元するために、OFF(Outlier-Friendly Feature Knowledge Distillation)を提案する。
論文 参考訳(メタデータ) (2024-06-11T11:40:12Z) - FlowMind: Automatic Workflow Generation with LLMs [12.848562107014093]
本稿では,Large Language Models(LLM)の機能を活用した新しいアプローチであるFlowMindを紹介する。
信頼性のあるアプリケーションプログラミングインタフェース(API)を用いたLLM推論を支援する講義のための汎用的なプロンプトレシピを提案する。
また、N-CENレポートからの質問応答タスクをベンチマークするための金融の新しいデータセットであるNCEN-QAについても紹介する。
論文 参考訳(メタデータ) (2024-03-17T00:36:37Z) - Couler: Unified Machine Learning Workflow Optimization in Cloud [6.769259207650922]
Coulerは、クラウドにおけるMLワークフローの統一最適化のために設計されたシステムである。
大規模言語モデル(LLM)をワークフロー生成に統合し、さまざまなワークフローエンジンに統一されたプログラミングインターフェースを提供する。
Couerは、CPU/メモリ使用率を15%以上改善し、ワークフロー完了率を約17%向上させた。
論文 参考訳(メタデータ) (2024-03-12T12:47:32Z) - JAX-Fluids 2.0: Towards HPC for Differentiable CFD of Compressible
Two-phase Flows [0.0]
JAX-Fluidsは、圧縮可能な単相および二相フロー用に設計されたPythonベースの完全微分可能CFDソルバである。
我々は、GPU(NVIDIA A100グラフィックスカード最大512)とTPU(最大1024 TPU v3コア)のHPCシステム上で効率よくスケールするJAXプリミティブ演算を利用した並列化戦略を導入する。
新しいコードバージョンは、強化された2相フローモデリング機能を提供する。
論文 参考訳(メタデータ) (2024-02-07T19:05:27Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
サブシステム-DFT (subsystem-DFT) は、大規模電子構造計算の計算コストを劇的に削減することができる。
sDFTの鍵となる要素は、その精度を支配する非付加的な運動エネルギーと交換相関関数である。
eQE 2.0は従来のコーンシャムDFTやCCSD(T)と比較して優れた相互作用エネルギーを提供する
論文 参考訳(メタデータ) (2021-03-12T22:26:36Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。