Converting Transformers into DGNNs Form
- URL: http://arxiv.org/abs/2502.00585v1
- Date: Sat, 01 Feb 2025 22:44:46 GMT
- Title: Converting Transformers into DGNNs Form
- Authors: Jie Zhang, Kuan-Chieh Wang, Bo-Wei Chiu, Min-Te Sun,
- Abstract summary: We introduce a synthetic unitary digraph convolution based on the digraph Fourier transform.
The resulting model, which we term Converter, effectively converts a Transformer into a Directed Graph Neural Network form.
We have tested Converter on Long-Range Arena benchmark, long document classification, and DNA sequence-based taxonomy classification.
- Score: 7.441691512676916
- License:
- Abstract: Recent advances in deep learning have established Transformer architectures as the predominant modeling paradigm. Central to the success of Transformers is the self-attention mechanism, which scores the similarity between query and key matrices to modulate a value matrix. This operation bears striking similarities to digraph convolution, prompting an investigation into whether digraph convolution could serve as an alternative to self-attention. In this study, we formalize this concept by introducing a synthetic unitary digraph convolution based on the digraph Fourier transform. The resulting model, which we term Converter, effectively converts a Transformer into a Directed Graph Neural Network (DGNN) form. We have tested Converter on Long-Range Arena benchmark, long document classification, and DNA sequence-based taxonomy classification. Our experimental results demonstrate that Converter achieves superior performance while maintaining computational efficiency and architectural simplicity, which establishes it as a lightweight yet powerful Transformer variant.
Related papers
- Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - SSformer: A Lightweight Transformer for Semantic Segmentation [7.787950060560868]
Swin Transformer set a new record in various vision tasks by using hierarchical architecture and shifted windows.
We design a lightweight yet effective transformer model, called SSformer.
Experimental results show the proposed SSformer yields comparable mIoU performance with state-of-the-art models.
arXiv Detail & Related papers (2022-08-03T12:57:00Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - New Approaches to Long Document Summarization: Fourier Transform Based
Attention in a Transformer Model [0.0]
We extensively redesign the newly introduced method of token mixing using Fourier Transforms (FNET) to replace the computationally expensive self-attention mechanism.
We also carry out long document summarization using established methods that are capable of processing over 8000 tokens.
All modifications showed better performance on the summarization task than when using the original FNET encoder in a transformer architecture.
arXiv Detail & Related papers (2021-11-25T18:03:41Z) - Transformer Assisted Convolutional Network for Cell Instance
Segmentation [5.195101477698897]
We present a transformer based approach to enhance the performance of the conventional convolutional feature extractor.
Our approach merges the convolutional feature maps with transformer-based token embeddings by applying a projection operation similar to self-attention in transformers.
arXiv Detail & Related papers (2021-10-05T18:18:31Z) - nnFormer: Interleaved Transformer for Volumetric Segmentation [50.10441845967601]
We introduce nnFormer, a powerful segmentation model with an interleaved architecture based on empirical combination of self-attention and convolution.
nnFormer achieves tremendous improvements over previous transformer-based methods on two commonly used datasets Synapse and ACDC.
arXiv Detail & Related papers (2021-09-07T17:08:24Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.