Robust Knowledge Distillation in Federated Learning: Counteracting Backdoor Attacks
- URL: http://arxiv.org/abs/2502.00587v1
- Date: Sat, 01 Feb 2025 22:57:08 GMT
- Title: Robust Knowledge Distillation in Federated Learning: Counteracting Backdoor Attacks
- Authors: Ebtisaam Alharbi, Leandro Soriano Marcolino, Qiang Ni, Antonios Gouglidis,
- Abstract summary: Federated Learning (FL) enables collaborative model training across multiple devices while preserving data privacy.
It remains susceptible to backdoor attacks, where malicious participants can compromise the global model.
We propose Robust Knowledge Distillation (RKD), a novel defence mechanism that enhances model integrity without relying on restrictive assumptions.
- Score: 12.227509826319267
- License:
- Abstract: Federated Learning (FL) enables collaborative model training across multiple devices while preserving data privacy. However, it remains susceptible to backdoor attacks, where malicious participants can compromise the global model. Existing defence methods are limited by strict assumptions on data heterogeneity (Non-Independent and Identically Distributed data) and the proportion of malicious clients, reducing their practicality and effectiveness. To overcome these limitations, we propose Robust Knowledge Distillation (RKD), a novel defence mechanism that enhances model integrity without relying on restrictive assumptions. RKD integrates clustering and model selection techniques to identify and filter out malicious updates, forming a reliable ensemble of models. It then employs knowledge distillation to transfer the collective insights from this ensemble to a global model. Extensive evaluations demonstrate that RKD effectively mitigates backdoor threats while maintaining high model performance, outperforming current state-of-the-art defence methods across various scenarios.
Related papers
- DROP: Poison Dilution via Knowledge Distillation for Federated Learning [23.793474308133003]
Federated Learning is vulnerable to adversarial manipulation, where malicious clients can inject poisoned updates to influence the global model's behavior.
We introduce DROP, a novel defense mechanism that combines clustering and activity-tracking techniques with extraction of benign behavior from clients.
Our approach demonstrates superior robustness compared to existing defenses across a wide range of learning configurations.
arXiv Detail & Related papers (2025-02-10T20:15:43Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
We introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation.
We demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2024-08-26T12:54:00Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Center-Based Relaxed Learning Against Membership Inference Attacks [3.301728339780329]
We propose a new architecture-agnostic training paradigm called center-based relaxed learning (CRL)
CRL is adaptive to any classification model and provides privacy preservation by sacrificing a minimal or no loss of model generalizability.
We empirically show that this approach exhibits comparable performance without requiring additional model capacity or data costs.
arXiv Detail & Related papers (2024-04-26T19:41:08Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.