Advanced Weakly-Supervised Formula Exploration for Neuro-Symbolic Mathematical Reasoning
- URL: http://arxiv.org/abs/2502.00629v1
- Date: Sun, 02 Feb 2025 02:34:36 GMT
- Title: Advanced Weakly-Supervised Formula Exploration for Neuro-Symbolic Mathematical Reasoning
- Authors: Yuxuan Wu, Hideki Nakayama,
- Abstract summary: We propose an advanced practice for neuro-symbolic reasoning systems to explore the intermediate labels with weak supervision from problem inputs and final outputs.
Our experiments on the Mathematics dataset illustrated the effectiveness of our proposals from multiple aspects.
- Score: 18.937801725778538
- License:
- Abstract: In recent years, neuro-symbolic methods have become a popular and powerful approach that augments artificial intelligence systems with the capability to perform abstract, logical, and quantitative deductions with enhanced precision and controllability. Recent studies successfully performed symbolic reasoning by leveraging various machine learning models to explicitly or implicitly predict intermediate labels that provide symbolic instructions. However, these intermediate labels are not always prepared for every task as a part of training data, and pre-trained models, represented by Large Language Models (LLMs), also do not consistently generate valid symbolic instructions with their intrinsic knowledge. On the other hand, existing work developed alternative learning techniques that allow the learning system to autonomously uncover optimal symbolic instructions. Nevertheless, their performance also exhibits limitations when faced with relatively huge search spaces or more challenging reasoning problems. In view of this, in this work, we put forward an advanced practice for neuro-symbolic reasoning systems to explore the intermediate labels with weak supervision from problem inputs and final outputs. Our experiments on the Mathematics dataset illustrated the effectiveness of our proposals from multiple aspects.
Related papers
- Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.
The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.
The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
arXiv Detail & Related papers (2024-11-30T18:54:08Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
We present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations.
We show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
arXiv Detail & Related papers (2024-10-30T16:11:05Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
This paper presents the first approach for autonomously learning logic-based relational representations for abstract states and actions.
The learned representations constitute auto-invented PDDL-like domain models.
Empirical results in deterministic settings show that powerful abstract representations can be learned from just a handful of robot trajectories.
arXiv Detail & Related papers (2024-02-19T06:28:21Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neuro-Symbolic AI: An Emerging Class of AI Workloads and their
Characterization [0.9949801888214526]
Neuro-symbolic artificial intelligence is a novel area of AI research.
We describe and analyze the performance characteristics of three recent neuro-symbolic models.
arXiv Detail & Related papers (2021-09-13T17:19:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.