論文の概要: MedConv: Convolutions Beat Transformers on Long-Tailed Bone Density Prediction
- arxiv url: http://arxiv.org/abs/2502.00631v1
- Date: Sun, 02 Feb 2025 02:43:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:41.293013
- Title: MedConv: Convolutions Beat Transformers on Long-Tailed Bone Density Prediction
- Title(参考訳): MedConv:長めの骨密度予測でトランスフォーマーに勝るコンボリューション
- Authors: Xuyin Qi, Zeyu Zhang, Huazhan Zheng, Mingxi Chen, Numan Kutaiba, Ruth Lim, Cherie Chiang, Zi En Tham, Xuan Ren, Wenxin Zhang, Lei Zhang, Hao Zhang, Wenbing Lv, Guangzhen Yao, Renda Han, Kangsheng Wang, Mingyuan Li, Hongtao Mao, Yu Li, Zhibin Liao, Yang Zhao, Minh-Son To,
- Abstract要約: 骨密度予測のための畳み込みモデルであるMedConvを導入する。
提案手法は従来の最先端手法に比べて精度が最大21%向上し,ROC AUCは20%向上した。
- 参考スコア(独自算出の注目度): 20.905367672585186
- License:
- Abstract: Bone density prediction via CT scans to estimate T-scores is crucial, providing a more precise assessment of bone health compared to traditional methods like X-ray bone density tests, which lack spatial resolution and the ability to detect localized changes. However, CT-based prediction faces two major challenges: the high computational complexity of transformer-based architectures, which limits their deployment in portable and clinical settings, and the imbalanced, long-tailed distribution of real-world hospital data that skews predictions. To address these issues, we introduce MedConv, a convolutional model for bone density prediction that outperforms transformer models with lower computational demands. We also adapt Bal-CE loss and post-hoc logit adjustment to improve class balance. Extensive experiments on our AustinSpine dataset shows that our approach achieves up to 21% improvement in accuracy and 20% in ROC AUC over previous state-of-the-art methods.
- Abstract(参考訳): CTスキャンでTスコアを推定する骨密度予測は重要であり、X線による骨密度検査のような従来の方法と比較して骨の健康を正確に評価する。
しかし、CTベースの予測は、ポータブルおよび臨床環境でのデプロイメントを制限するトランスフォーマーベースのアーキテクチャの高い計算複雑性と、予測を歪ませる現実世界の病院データの不均衡、長期分布の2つの大きな課題に直面している。
これらの問題に対処するため,骨密度予測のための畳み込みモデルであるMedConvを導入する。
また,クラスバランスを改善するために,Bal-CE損失とポストホックロジット調整を適用した。
今回のAustinSpineデータセットの大規模な実験により,従来の最先端手法よりも精度が最大21%向上し,ROC AUCが20%向上したことが明らかとなった。
関連論文リスト
- Region-wise stacking ensembles for estimating brain-age using MRI [0.23301643766310373]
高次元MRIデータは、一般化可能な解釈可能なモデルの構築に挑戦する。
本稿では,概念的に新しい2段階積み重ねアンサンブル(SE)手法を提案する。
第1レベルの予測では、改善され、より堅牢な老化信号が見られた。
論文 参考訳(メタデータ) (2025-01-17T12:24:28Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
深層学習に基づく医療画像セグメンテーションモデルは、様々な医療センターに展開すると、しばしば性能劣化に直面します。
本稿では,クリニカル修正予測のほとんど見落とされがちな可能性を生かした,新規なHuman-in-the-loop TTAフレームワークを提案する。
我々のフレームワークは、ドメインの格差によって生じる予測のばらつきを減らし、分散損失を想定する。
論文 参考訳(メタデータ) (2024-05-14T02:02:15Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
MICCAI 2021 ヘッドとネックタマ (HECKTOR) セグメンテーションと結果予測の課題は、セグメンテーション法を比較するためのプラットフォームを作成する。
腫瘍容積セグメンテーションのために複数のニューラルネットワークを訓練し,これらのセグメンテーションを組込み,平均Dice類似度係数0.75をクロスバリデーションで達成した。
患者進行自由生存の予測のために,臨床,放射線学,深層学習機能を組み合わせたCox比例的ハザード回帰法を提案する。
論文 参考訳(メタデータ) (2021-11-06T10:28:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Impact of Spherical Coordinates Transformation Pre-processing in Deep
Convolution Neural Networks for Brain Tumor Segmentation and Survival
Prediction [0.0]
球面変換入力データを用いたディープ畳み込みニューラルネットワーク(DCNN)のフィード化を目的とした新しい手法を提案する。
本研究では,球面座標変換を前処理法として適用した。
LesionEncoderフレームワークはDCNNモデルから自動的に機能を抽出し、OS予測の0.586精度を実現している。
論文 参考訳(メタデータ) (2020-10-27T00:33:03Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。