論文の概要: Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies
- arxiv url: http://arxiv.org/abs/2502.00651v1
- Date: Sun, 02 Feb 2025 03:38:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:04.269260
- Title: Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies
- Title(参考訳): サイバーセキュリティフレームワークをITセキュリティに統合する - 脅威軽減戦略と適応技術に関する包括的分析
- Authors: Amit Lokare, Shripad Bankar, Padmajeet Mhaske,
- Abstract要約: サイバーセキュリティの脅威の状況は、IT構造を保護するための健全なフレームワークの開発を、積極的に推進している。
本稿では,サイバーセキュリティの脅威の性質の変化に対処する上での,このようなフレームワークの役割に焦点をあてて,ITセキュリティへのサイバーセキュリティフレームワークの適用について論じる。
この議論は、リアルタイム脅威検出と応答メカニズムのコアとして、人工知能(AI)や機械学習(ML)といった技術も挙げている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The cybersecurity threat landscape is constantly actively making it imperative to develop sound frameworks to protect the IT structures. Based on this introduction, this paper aims to discuss the application of cybersecurity frameworks into the IT security with focus placed on the role of such frameworks in addressing the changing nature of cybersecurity threats. It explores widely used models, including the NIST Cybersecurity Framework, Zero Trust Architecture, and the ISO/IEC 27001, and how they apply to industries including finance, healthcare and government. The discussion also singles out such technologies as Artificial Intelligence (AI) and Machine Learning (ML) as the core for real-time threat detection and response mechanisms. As these integration challenges demonstrate, the study provides tangible and proven approaches to tackle framework implementation issues such as legitimate security issues, limited availability of funds and resources, and compliance with legal requirements. By capturing current trends and exposures, the findings promote strong, portfolio-based and risk-appropriate security approaches adjusted for organizational goals and capable to prevent advanced cyber threats.
- Abstract(参考訳): サイバーセキュリティの脅威の状況は、IT構造を保護するための健全なフレームワークの開発を、積極的に推進している。
本稿では,サイバーセキュリティの脅威の性質の変化に対処する上で,このようなフレームワークの役割に焦点をあて,ITセキュリティへのサイバーセキュリティフレームワークの適用について論じる。
NISTサイバーセキュリティフレームワーク、Zero Trust Architecture、ISO/IEC 27001など、広く使われているモデルや、金融、医療、政府といった業界にどのように適用されているかを探求している。
この議論は、リアルタイム脅威検出と応答メカニズムのコアとして、人工知能(AI)や機械学習(ML)といった技術も挙げている。
これらの統合課題が示すように、この研究は、正当なセキュリティ問題、資金とリソースの可用性の制限、法的要件の遵守といった、フレームワークの実装問題に取り組むための、具体的で実証されたアプローチを提供する。
現在の傾向と暴露を捉えることで、この発見は、組織目標に合わせて調整された強力なポートフォリオベースでリスクに適合したセキュリティアプローチを促進し、高度なサイバー脅威を防ぐことができる。
関連論文リスト
- Exploring AI-Enabled Cybersecurity Frameworks: Deep-Learning Techniques, GPU Support, and Future Enhancements [0.4419843514606336]
新たなサイバーセキュリティシステムは、インシデントを検出し、アラートを分析し、イベントに応答する能力を高めるために、AIテクニック、特にディープラーニングアルゴリズムを取り入れている。
これらの技術は、動的なセキュリティ脅威と戦うための有望なアプローチを提供するが、しばしばかなりの計算資源を必要とする。
我々は、38のサイバーセキュリティフレームワークのうち3つのうち3つが活用している、合計2つの深層学習アルゴリズムを特定した。
論文 参考訳(メタデータ) (2024-12-17T08:14:12Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Enhancing cybersecurity defenses: a multicriteria decision-making approach to MITRE ATT&CK mitigation strategy [0.0]
本稿では、どのセキュリティ制御を行うべきかを判断・優先順位付けすることで、提示されたセキュリティ脅威に対する防衛戦略を提案する。
このアプローチは、組織がより堅牢でレジリエントなサイバーセキュリティ姿勢を達成するのに役立つ。
論文 参考訳(メタデータ) (2024-07-27T09:47:26Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
ステルスデータ流出は、隠蔽侵入、拡張された検出不能、機密データの不正な拡散を特徴とする重要なサイバー脅威である。
以上の結果から,従来の防衛戦略はこれらの高度な脅威に対処するには不十分であることが判明した。
この複雑な風景をナビゲートする上で、潜在的な脅威を予測し、防衛を継続的に更新することが重要です。
論文 参考訳(メタデータ) (2024-05-17T16:14:45Z) - Assessing The Effectiveness Of Current Cybersecurity Regulations And Policies In The US [0.0]
本研究は、2000年から2022年までのサイバー犯罪データの傾向を分析し、これらの規制が異なる分野に与える影響を評価する。
この発見は、サイバー脅威の進化に直面する課題、成功、継続的な適応の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-17T15:26:55Z) - Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.068780235482514]
本稿では,Large Language Models (LLMs) のプログラミングアシスタントとしてのサイバーセキュリティを促進するために開発された,包括的なベンチマークであるCyberSecEvalを提案する。
CyberSecEvalは、2つの重要なセキュリティ領域におけるLSMの徹底的な評価を提供する。
論文 参考訳(メタデータ) (2023-12-07T22:07:54Z) - Defending against cybersecurity threats to the payments and banking
system [0.0]
サイバー犯罪の拡散は、銀行セクターの様々な利害関係者にとって大きな懸念である。
ソフトウェアシステムに対するサイバー攻撃のリスクを防止するには、サイバースペース内で動作しているエンティティを特定する必要がある。
本稿では,サイバー空間の資産を識別し,サイバー脅威を分類し,セキュリティ対策を提供し,タイプや機能を管理するためのセキュリティ対策をマップ化する,様々なアプローチについて検討する。
論文 参考訳(メタデータ) (2022-12-15T11:55:11Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。