ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Consensus Enforcement, and Column Exploration
- URL: http://arxiv.org/abs/2502.00675v5
- Date: Tue, 03 Jun 2025 18:03:32 GMT
- Title: ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Consensus Enforcement, and Column Exploration
- Authors: Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta, Hao Zhang,
- Abstract summary: We present ReFoRCE, a Text-to-confidence agent that tops the Spider 2.0 leaderboard.<n>ReFoRCE achieves state-of-the-art results, with scores of 35.83 Spider 2.0-Snow and 36.56 on Spider 2.0-Lite.
- Score: 32.83579488224367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ReFoRCE, a Text-to-SQL agent that tops the Spider 2.0 leaderboard--a challenging benchmark reflecting complex, real-world Text-to-SQL scenarios. While Text-to-SQL systems enable natural language queries over structured databases, deploying them in enterprise environments remains difficult due to large, complex schemas (with over 1,000 columns), diverse SQL dialects (e.g., BigQuery, Snowflake), and sophisticated query requirements (e.g., transformations and analytics). ReFoRCE addresses these challenges through: (a) database information compression via pattern-based table grouping and LLM-guided schema linking to alleviate long-context issues; (b) self-refinement to iteratively correct syntax and semantic errors across dialects; (c) majority-vote consensus to select high-confidence candidates while deferring ambiguous cases arising from sophisticated queries; and (d) iterative column exploration guided by execution feedback to resolve those deferred cases. ReFoRCE achieves new state-of-the-art results, with scores of 35.83 on Spider 2.0-Snow and 36.56 on Spider 2.0-Lite.
Related papers
- Weaver: Interweaving SQL and LLM for Table Reasoning [63.09519234853953]
Weaver generates a flexible, step-by-step plan that combinessql for structured data retrieval with LLMs for semantic processing.<n>Weaver consistently outperforms state-of-the-art methods across four TableQA datasets, reducing both API calls and error rates.
arXiv Detail & Related papers (2025-05-25T03:27:37Z) - UNJOIN: Enhancing Multi-Table Text-to-SQL Generation via Schema Simplification [50.59009084277447]
We introduce UNJOIN, a framework that decouples the retrieval of schema elements from logic generation.<n>In the first stage, we merge the column names of all tables in the database into a single-table representation by prefixing each column with its table name.<n>In the second stage, the query is generated on this simplified schema and mapped back to the original schema by reconstructing JOINs, UNIONs, and relational logic.
arXiv Detail & Related papers (2025-05-23T17:28:43Z) - LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL [14.677024710675838]
LinkAlign is a novel framework that can effectively adapt existing baselines to real-world environments.
We evaluate our method performance on the SPIDER and BIRD benchmarks.
LinkAlign ranks highest among models excluding those using long chain-of-thought reasoning LLMs.
arXiv Detail & Related papers (2025-03-24T11:53:06Z) - Bridging the Gap: Transforming Natural Language Questions into SQL Queries via Abstract Query Pattern and Contextual Schema Markup [6.249316460506702]
We identify two important gaps: the structural mapping gap and the lexical mapping gap.
PAS-related achieves an execution accuracy of 87.9%, and leading results on the BIRD dataset with an execution accuracy of 64.67%.
Results on the Spider benchmark set a new state-of-the-art on the Spider benchmark with an execution accuracy of 87.9%, and leading results on the BIRD dataset with an execution accuracy of 64.67%.
arXiv Detail & Related papers (2025-02-20T16:11:27Z) - Balancing Content Size in RAG-Text2SQL System [0.0]
This research investigates the nuanced trade-off between document size and quality of retrieved documents.
We explore the phenomenon of hallucinations in Text2 models, emphasizing the critical role of curated document presentation in minimizing errors.
Our findings offer a roadmap for enhancing the robustness of RAG + Text2 systems, offering practical insights for real-world applications.
arXiv Detail & Related papers (2025-01-28T06:06:28Z) - Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows [64.94146689665628]
Spider 2.0 is an evaluation framework for real-world text-to-sql problems derived from enterprise-level database use cases.
The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake.
We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-levels.
arXiv Detail & Related papers (2024-11-12T12:52:17Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
We introduce E-Seek, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation.<n>E-Seek enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question andsql construction plan, bridging the gap between the query and the database structure.<n> Comprehensive evaluations illustrate that E-Seek achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set.
arXiv Detail & Related papers (2024-09-25T09:02:48Z) - SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy [24.919119901664843]
This paper introduces a robust system integrating open-source Large Language Models (LLMs) with a suite of tools to enhance query accuracy and usability.
demonstrated by its leading performance on the Spider Leaderboard and deployment by Ant Group.
arXiv Detail & Related papers (2024-07-19T06:01:57Z) - CodeS: Towards Building Open-source Language Models for Text-to-SQL [42.11113113574589]
We introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B.
CodeS is a fully open language model, which achieves superior accuracy with much smaller parameter sizes.
We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark.
arXiv Detail & Related papers (2024-02-26T07:00:58Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
Recent Text-to-yourself methods usually suffer from significant performance degradation on "huge" databases.
We introduce MAC, a novel Text-to-yourself LLM-based multi-agent collaborative framework.
In our framework, we leverage GPT-4 as the strong backbone for all agent tasks to determine the upper bound of our framework.
We then fine-tune an open-sourced instruction-followed model,sql-Llama, by leveraging Code 7B, to accomplish all tasks as GPT-4 does.
arXiv Detail & Related papers (2023-12-18T14:40:20Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
We propose a Text-to-aware prompting framework, involving a sample and a dynamic revision chain.
Our approach incorporates sample demonstrations and fine-grained information related to the given question.
To generate executable and accuratesqls without human intervention, we design a dynamic revision chain which iteratively adapts fine-grained feedback.
arXiv Detail & Related papers (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
We introduce a UNIfied benchmark for Text-to-domain systems.
It is composed of publicly available text-to-domain datasets and 29K databases.
Compared to the widely used Spider benchmark, we introduce a threefold increase in SQL patterns.
arXiv Detail & Related papers (2023-05-25T17:19:52Z) - Wav2SQL: Direct Generalizable Speech-To-SQL Parsing [55.10009651476589]
Speech-to-Spider (S2Spider) aims to convert spoken questions intosql queries given databases.
We propose the first direct speech-to-speaker parsing model Wav2 which avoids error compounding across cascaded systems.
Experimental results demonstrate that Wav2 avoids error compounding and achieves state-of-the-art results by up to 2.5% accuracy improvement over the baseline.
arXiv Detail & Related papers (2023-05-21T19:26:46Z) - Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation [103.90033029330527]
Few-Shot Instance (FSIS) requires detecting and segmenting novel classes with limited support examples.
We introduce a unified framework, Reference Twice (RefT), to exploit the relationship between support and query features for FSIS.
arXiv Detail & Related papers (2023-01-03T15:33:48Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
A large amount of world's knowledge is stored in structured databases.
query languages can answer questions that require complex reasoning, as well as offering full explainability.
arXiv Detail & Related papers (2021-08-05T22:04:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.