Learning Autonomous Code Integration for Math Language Models
- URL: http://arxiv.org/abs/2502.00691v2
- Date: Sun, 16 Feb 2025 07:18:23 GMT
- Title: Learning Autonomous Code Integration for Math Language Models
- Authors: Haozhe Wang, Long Li, Chao Qu, Fengming Zhu, Weidi Xu, Wei Chu, Fangzhen Lin,
- Abstract summary: We propose a novel framework that synergizes structured exploration (E-step) with off-policy optimization (M-step) to create a self-reinforcing cycle between metacognitive tool-use decisions and evolving capabilities.<n>Our 7B model improves over 11% on MATH500 and 9.4% on AIME without o1-like CoT.
- Score: 30.057052324461534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in mathematical problem-solving with language models (LMs) integrate chain-of-thought (CoT) reasoning and code execution to harness their complementary strengths. However, existing hybrid frameworks exhibit a critical limitation: they depend on externally dictated instructions or rigid code-integration templates, lacking metacognitive awareness -- the capacity to dynamically evaluate intrinsic capabilities and autonomously determine when and how to integrate tools. This rigidity motivates our study of autonomous code integration, enabling models to adapt tool-usage strategies as their reasoning abilities evolve during training. While reinforcement learning (RL) shows promise for boosting LLM reasoning at scale (e.g., DeepSeek-R1), we demonstrate its inefficiency in learning autonomous code integration due to inadequate exploration of the vast combinatorial space of CoT-code interleaving patterns. To address this challenge, we propose a novel Expectation-Maximization (EM) framework that synergizes structured exploration (E-step) with off-policy RL optimization (M-step), creating a self-reinforcing cycle between metacognitive tool-use decisions and evolving capabilities. Experiments reveal our method achieves superior results through improved exploration. Notably, our 7B model improves over 11% on MATH500 and 9.4% on AIME without o1-like CoT.
Related papers
- ReTool: Reinforcement Learning for Strategic Tool Use in LLMs [27.07998056454784]
ReTool enhances long-form reasoning with tool-integrated learning.
Model achieves 67% accuracy with 400 training steps.
Remarkably, ReTool-32B attains 72.5% accuracy in extended settings.
arXiv Detail & Related papers (2025-04-15T18:10:22Z) - Generalising from Self-Produced Data: Model Training Beyond Human Constraints [0.0]
This paper introduces a novel framework in which AI models autonomously generate and validate new knowledge.
Central to this approach is an unbounded, ungamable numeric reward that guides learning without requiring human benchmarks.
arXiv Detail & Related papers (2025-04-07T03:48:02Z) - Reinforcement Learning Environment with LLM-Controlled Adversary in D&D 5th Edition Combat [0.0]
This research employs Deep Q-Networks (DQN) for the smaller agents, creating a testbed for strategic AI development.
We successfully integrated sophisticated language models into the RL framework, enhancing strategic decision-making processes.
arXiv Detail & Related papers (2025-03-19T22:48:20Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.
Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
We compare seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models.<n>Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy.<n>We open-source our benchmark code to support the integration of additional models in future research.
arXiv Detail & Related papers (2024-08-20T13:34:17Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - Learning Environment Models with Continuous Stochastic Dynamics [0.0]
We aim to provide insights into the decisions faced by the agent by learning an automaton model of environmental behavior under the control of an agent.
In this work, we raise the capabilities of automata learning such that it is possible to learn models for environments that have complex and continuous dynamics.
We apply our automata learning framework on popular RL benchmarking environments in the OpenAI Gym, including LunarLander, CartPole, Mountain Car, and Acrobot.
arXiv Detail & Related papers (2023-06-29T12:47:28Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.