論文の概要: UPL: Uncertainty-aware Pseudo-labeling for Imbalance Transductive Node Classification
- arxiv url: http://arxiv.org/abs/2502.00716v1
- Date: Sun, 02 Feb 2025 08:19:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:58:11.807705
- Title: UPL: Uncertainty-aware Pseudo-labeling for Imbalance Transductive Node Classification
- Title(参考訳): UPL:不均衡トランスダクティブノード分類のための不確かさを意識した擬似ラベル
- Authors: Mohammad T. Teimuri, Zahra Dehghanian, Gholamali Aminian, Hamid R. Rabiee,
- Abstract要約: 我々は、単純で新しいアルゴリズム、不確かさを意識した擬似ラベル (UPL) を提案する。
提案手法は,未ラベルノードに割り当てられた擬似ラベルを利用して,分類精度に対する不均衡の悪影響を軽減する。
UPLアルゴリズムを様々なベンチマークデータセットで評価し、既存の最先端手法と比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 4.314840213630772
- License:
- Abstract: Graph-structured datasets often suffer from class imbalance, which complicates node classification tasks. In this work, we address this issue by first providing an upper bound on population risk for imbalanced transductive node classification. We then propose a simple and novel algorithm, Uncertainty-aware Pseudo-labeling (UPL). Our approach leverages pseudo-labels assigned to unlabeled nodes to mitigate the adverse effects of imbalance on classification accuracy. Furthermore, the UPL algorithm enhances the accuracy of pseudo-labeling by reducing training noise of pseudo-labels through a novel uncertainty-aware approach. We comprehensively evaluate the UPL algorithm across various benchmark datasets, demonstrating its superior performance compared to existing state-of-the-art methods.
- Abstract(参考訳): グラフ構造化データセットは、しばしばクラス不均衡に悩まされ、ノード分類タスクが複雑になる。
本稿では、まず、不均衡なトランスダクティブノード分類における集団リスクの上限について、この問題に対処する。
次に、単純で斬新なアルゴリズムUncertainty-aware Pseudo-labeling (UPL)を提案する。
提案手法は,未ラベルノードに割り当てられた擬似ラベルを利用して,分類精度に対する不均衡の悪影響を軽減する。
さらに、UPLアルゴリズムは、新しい不確実性認識アプローチにより擬似ラベルのトレーニングノイズを低減することにより、擬似ラベルの精度を向上させる。
様々なベンチマークデータセットにまたがってUPLアルゴリズムを網羅的に評価し,既存の最先端手法と比較して優れた性能を示した。
関連論文リスト
- AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for
Semi-Supervised Text Recognition [21.583569162994277]
最も一般的なSSLアプローチの1つは擬似ラベル(PL)である。
PL法はノイズによって著しく劣化し、ノイズの多いラベルに過度に適合する傾向がある。
テキスト認識のための擬似ラベル生成と不確実性に基づくデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-31T02:21:02Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
そこで本研究では,アレータ性およびてんかん性不確実性定量化に依存する,教師なし不確実性認識の新たな目的を提案する。
CIFAR-100やMini-ImageNetのような複雑なデータセットでは,結果が最先端の成果よりも優れています。
論文 参考訳(メタデータ) (2022-07-22T00:15:02Z) - Rethinking Pseudo Labels for Semi-Supervised Object Detection [84.697097472401]
物体検出に適した確実な擬似ラベルを導入する。
我々は,クラス不均衡問題を緩和するために,各カテゴリの擬似ラベルと再重み付き損失関数を生成するために使用する閾値を動的に調整する。
提案手法では,COCOのラベル付きデータのみを用いて,教師付きベースラインを最大10%改善する。
論文 参考訳(メタデータ) (2021-06-01T01:32:03Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
Pseudo-label (DARP) アルゴリズムの分散アライメント・リファナリーを開発する。
DARPは最先端のSSLスキームと有効かつ効率的に互換性があることを示す。
論文 参考訳(メタデータ) (2020-07-17T09:16:05Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
極値理論に基づく新しいアイデンティティ分離法を提案する。
重なり合うラベルノイズによる問題を大幅に低減する。
制御された設定と実際の設定の両方の実験は、我々のメソッドの一貫性のある改善を示している。
論文 参考訳(メタデータ) (2020-07-14T12:26:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。