Spatio-Temporal Progressive Attention Model for EEG Classification in Rapid Serial Visual Presentation Task
- URL: http://arxiv.org/abs/2502.00730v1
- Date: Sun, 02 Feb 2025 09:28:38 GMT
- Title: Spatio-Temporal Progressive Attention Model for EEG Classification in Rapid Serial Visual Presentation Task
- Authors: Yang Li, Wei Liu, Tianzhi Feng, Fu Li, Chennan Wu, Boxun Fu, Zhifu Zhao, Xiaotian Wang, Guangming Shi,
- Abstract summary: We propose a novel progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation.
The results show that ourAM can achieve better performance than all the compared methods.
- Score: 38.949309627200904
- License:
- Abstract: As a type of multi-dimensional sequential data, the spatial and temporal dependencies of electroencephalogram (EEG) signals should be further investigated. Thus, in this paper, we propose a novel spatial-temporal progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation (RSVP) tasks. STPAM first adopts three distinct spatial experts to learn the spatial topological information of brain regions progressively, which is used to minimize the interference of irrelevant brain regions. Concretely, the former expert filters out EEG electrodes in the relative brain regions to be used as prior knowledge for the next expert, ensuring that the subsequent experts gradually focus their attention on information from significant EEG electrodes. This process strengthens the effect of the important brain regions. Then, based on the above-obtained feature sequence with spatial information, three temporal experts are adopted to capture the temporal dependence by progressively assigning attention to the crucial EEG slices. Except for the above EEG classification method, in this paper, we build a novel Infrared RSVP EEG Dataset (IRED) which is based on dim infrared images with small targets for the first time, and conduct extensive experiments on it. The results show that our STPAM can achieve better performance than all the compared methods.
Related papers
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association.
We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies.
The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics.
arXiv Detail & Related papers (2024-09-27T22:52:31Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Balancing Spectral, Temporal and Spatial Information for EEG-based Alzheimer's Disease Classification [9.095745556414588]
We investigate the importance of spatial information relative to spectral or temporal information by varying the proportion of each dimension for AD classification.
Our findings show that spatial information is more important than temporal information and equally valuable as spectral information.
arXiv Detail & Related papers (2024-02-21T04:36:30Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - Multi-Tier Platform for Cognizing Massive Electroencephalogram [6.100405014798822]
An end-to-end platform is built for precisely cognizing brain activities.
A spiking neural network (SNN) based tier is designed to distill the principle information in terms of spike-streams from the rare features.
The proposed tier-3 transposes time- and space-domain of spike patterns from the SNN; and feeds the transposed pattern-matrices into an artificial neural network (ANN, Transformer specifically)
arXiv Detail & Related papers (2022-04-21T01:27:58Z) - Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
We present a novel framework allowing us to retrieve the attention state, i.e degree of attention given to a specific task, from EEG signals.
While previous methods often consider the spatial relationship in EEG through electrodes, we propose here to also exploit the spatial and temporal information with a transformer-based network.
The proposed network has been trained and validated on two public datasets and achieves higher results compared to state-of-the-art models.
arXiv Detail & Related papers (2022-04-04T08:05:33Z) - SFE-Net: EEG-based Emotion Recognition with Symmetrical Spatial Feature
Extraction [1.8047694351309205]
We present a spatial folding ensemble network (SFENet) for EEG feature extraction and emotion recognition.
Motivated by the spatial symmetry mechanism of human brain, we fold the input EEG channel data with five different symmetrical strategies.
With this network, the spatial features of different symmetric folding signlas can be extracted simultaneously, which greatly improves the robustness and accuracy of feature recognition.
arXiv Detail & Related papers (2021-04-09T12:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.