Balancing Spectral, Temporal and Spatial Information for EEG-based Alzheimer's Disease Classification
- URL: http://arxiv.org/abs/2402.13523v2
- Date: Tue, 30 Apr 2024 16:50:28 GMT
- Title: Balancing Spectral, Temporal and Spatial Information for EEG-based Alzheimer's Disease Classification
- Authors: Stephan Goerttler, Fei He, Min Wu,
- Abstract summary: We investigate the importance of spatial information relative to spectral or temporal information by varying the proportion of each dimension for AD classification.
Our findings show that spatial information is more important than temporal information and equally valuable as spectral information.
- Score: 9.095745556414588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prospect of future treatment warrants the development of cost-effective screening for Alzheimer's disease (AD). A promising candidate in this regard is electroencephalography (EEG), as it is one of the most economic imaging modalities. Recent efforts in EEG analysis have shifted towards leveraging spatial information, employing novel frameworks such as graph signal processing or graph neural networks. Here, we investigate the importance of spatial information relative to spectral or temporal information by varying the proportion of each dimension for AD classification. To do so, we systematically test various dimension resolution configurations on two routine EEG datasets. Our findings show that spatial information is more important than temporal information and equally valuable as spectral information. On the larger second dataset, substituting spectral with spatial information even led to an increase of 1.1% in accuracy, which emphasises the importance of spatial information for EEG-based AD classification. We argue that our resolution-based feature extraction has the potential to improve AD classification specifically, and multivariate signal classification generally.
Related papers
- Spatio-Temporal Progressive Attention Model for EEG Classification in Rapid Serial Visual Presentation Task [38.949309627200904]
We propose a novel progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation.
The results show that ourAM can achieve better performance than all the compared methods.
arXiv Detail & Related papers (2025-02-02T09:28:38Z) - Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes.
This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data.
arXiv Detail & Related papers (2024-08-29T08:26:00Z) - Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - 'Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark
Detection and CVM Stage Classification [0.402058998065435]
This dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions.
The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset.
We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.
arXiv Detail & Related papers (2023-02-15T17:31:56Z) - Unsupervised Domain Adaptation for Dysarthric Speech Detection via
Domain Adversarial Training and Mutual Information Minimization [52.82138296332476]
This paper makes a first attempt to formulate cross-domain Dysarthric speech detection (DSD) as an unsupervised domain adaptation problem.
We propose a multi-task learning strategy, including dysarthria presence classification (DPC), domain adversarial training ( DAT) and mutual information minimization (MIM)
Experiments show that the incorporation of UDA attains absolute increases of 22.2% and 20.0% respectively in utterance-level weighted average recall and speaker-level accuracy.
arXiv Detail & Related papers (2021-06-18T13:34:36Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
A novel deep learning framework capable of doing subject-independent emotion recognition is presented.
A convolutional neural network (CNN) with attention framework is presented for performing the task.
The proposed approach has been validated using publicly available datasets.
arXiv Detail & Related papers (2021-06-07T09:41:15Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.