Task-Specific Adaptation with Restricted Model Access
- URL: http://arxiv.org/abs/2502.00796v1
- Date: Sun, 02 Feb 2025 13:29:44 GMT
- Title: Task-Specific Adaptation with Restricted Model Access
- Authors: Matan Levy, Rami Ben-Ari, Dvir Samuel, Nir Darshan, Dani Lischinski,
- Abstract summary: "Gray-box" fine-tuning approaches, where the model's architecture and weights remain hidden, allow only gradient propagation.
We introduce a novel yet simple and effective framework that adapts to new tasks using two lightweight learnable modules at the model's input and output.
We evaluate our approaches across several backbones on benchmarks such as text-image alignment, text-video alignment, and sketch-image alignment.
- Score: 23.114703555189937
- License:
- Abstract: The emergence of foundational models has greatly improved performance across various downstream tasks, with fine-tuning often yielding even better results. However, existing fine-tuning approaches typically require access to model weights and layers, leading to challenges such as managing multiple model copies or inference pipelines, inefficiencies in edge device optimization, and concerns over proprietary rights, privacy, and exposure to unsafe model variants. In this paper, we address these challenges by exploring "Gray-box" fine-tuning approaches, where the model's architecture and weights remain hidden, allowing only gradient propagation. We introduce a novel yet simple and effective framework that adapts to new tasks using two lightweight learnable modules at the model's input and output. Additionally, we present a less restrictive variant that offers more entry points into the model, balancing performance with model exposure. We evaluate our approaches across several backbones on benchmarks such as text-image alignment, text-video alignment, and sketch-image alignment. Results show that our Gray-box approaches are competitive with full-access fine-tuning methods, despite having limited access to the model.
Related papers
- Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - Towards Compatible Fine-tuning for Vision-Language Model Updates [114.25776195225494]
Class-conditioned Context Optimization (ContCoOp) integrates learnable prompts with class embeddings using an attention layer before inputting them into the text encoder.
Our experiments over 15 datasets show that our ContCoOp achieves the highest compatibility over the baseline methods, and exhibits robust out-of-distribution generalization.
arXiv Detail & Related papers (2024-12-30T12:06:27Z) - A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
We introduce a simple, unified framework to handle diverse conditional generation tasks.
Our approach enables versatile capabilities via different inference-time sampling schemes.
Our model supports additional capabilities like non-spatially aligned and coarse conditioning.
arXiv Detail & Related papers (2024-10-15T09:41:43Z) - PLeaS -- Merging Models with Permutations and Least Squares [43.17620198572947]
We propose a new two-step algorithm to merge models-termed PLeaS.
PLeaS partially matches nodes in each layer by maximizing alignment.
It computes the weights of the merged model as a layer-wise Least Squares solution.
arXiv Detail & Related papers (2024-07-02T17:24:04Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models.
We revisit the line of implicit models and trace them back to the original weight-tied models.
Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants.
arXiv Detail & Related papers (2023-07-16T11:45:35Z) - Earning Extra Performance from Restrictive Feedbacks [41.05874087063763]
We set up a challenge named emphEarning eXtra PerformancE from restriCTive feEDdbacks (EXPECTED) to describe this form of model tuning problems.
The goal of the model provider is to eventually deliver a satisfactory model to the local user(s) by utilizing the feedbacks.
We propose to characterize the geometry of the model performance with regard to model parameters through exploring the parameters' distribution.
arXiv Detail & Related papers (2023-04-28T13:16:54Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Coreference Resolution without Span Representations [20.84150608402576]
We introduce a lightweight coreference model that removes the dependency on span representations, handcrafted features, and NLPs.
Our model performs competitively with the current end-to-end model, while being simpler and more efficient.
arXiv Detail & Related papers (2021-01-02T11:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.