Error-quantified Conformal Inference for Time Series
- URL: http://arxiv.org/abs/2502.00818v1
- Date: Sun, 02 Feb 2025 15:02:36 GMT
- Title: Error-quantified Conformal Inference for Time Series
- Authors: Junxi Wu, Dongjian Hu, Yajie Bao, Shu-Tao Xia, Changliang Zou,
- Abstract summary: Uncertainty quantification in time series prediction is challenging due to the temporal dependence and distribution shift on sequential data.
We propose itError-quantified Conformal Inference (ECI) by smoothing the quantile loss function.
ECI can achieve valid miscoverage control and output tighter prediction sets than other baselines.
- Score: 40.438171912992864
- License:
- Abstract: Uncertainty quantification in time series prediction is challenging due to the temporal dependence and distribution shift on sequential data. Conformal inference provides a pivotal and flexible instrument for assessing the uncertainty of machine learning models through prediction sets. Recently, a series of online conformal inference methods updated thresholds of prediction sets by performing online gradient descent on a sequence of quantile loss functions. A drawback of such methods is that they only use the information of revealed non-conformity scores via miscoverage indicators but ignore error quantification, namely the distance between the non-conformity score and the current threshold. To accurately leverage the dynamic of miscoverage error, we propose \textit{Error-quantified Conformal Inference} (ECI) by smoothing the quantile loss function. ECI introduces a continuous and adaptive feedback scale with the miscoverage error, rather than simple binary feedback in existing methods. We establish a long-term coverage guarantee for ECI under arbitrary dependence and distribution shift. The extensive experimental results show that ECI can achieve valid miscoverage control and output tighter prediction sets than other baselines.
Related papers
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
We consider the problem of adaptive conformal inference without any assumptions about the data generating process.
Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent.
We propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques.
arXiv Detail & Related papers (2024-12-26T18:42:08Z) - Multivariate Probabilistic Time Series Forecasting with Correlated Errors [17.212396544233307]
We introduce a plug-and-play method that learns the covariance structure of errors over multiple steps for autoregressive models.
We evaluate our method on probabilistic models built on RNNs and Transformer architectures.
arXiv Detail & Related papers (2024-02-01T20:27:19Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
Quantile regression, based on check loss, is a widely used inferential paradigm in Statistics.
We consider the analogue of check loss in the binary classification setting.
We develop individualized confidence scores that can be used to decide whether a prediction is reliable.
arXiv Detail & Related papers (2021-02-09T07:07:42Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.