Federated Generalised Variational Inference: A Robust Probabilistic Federated Learning Framework
- URL: http://arxiv.org/abs/2502.00846v1
- Date: Sun, 02 Feb 2025 16:39:37 GMT
- Title: Federated Generalised Variational Inference: A Robust Probabilistic Federated Learning Framework
- Authors: Terje Mildner, Oliver Hamelijnck, Paris Giampouras, Theodoros Damoulas,
- Abstract summary: FedGVI is a probabilistic Federated Learning (FL) framework that is provably robust to both prior and likelihood misspecification.
We offer theoretical analysis in terms of fixed-point convergence, optimality of the cavity distribution, and provable robustness.
- Score: 12.454538785810259
- License:
- Abstract: We introduce FedGVI, a probabilistic Federated Learning (FL) framework that is provably robust to both prior and likelihood misspecification. FedGVI addresses limitations in both frequentist and Bayesian FL by providing unbiased predictions under model misspecification, with calibrated uncertainty quantification. Our approach generalises previous FL approaches, specifically Partitioned Variational Inference (Ashman et al., 2022), by allowing robust and conjugate updates, decreasing computational complexity at the clients. We offer theoretical analysis in terms of fixed-point convergence, optimality of the cavity distribution, and provable robustness. Additionally, we empirically demonstrate the effectiveness of FedGVI in terms of improved robustness and predictive performance on multiple synthetic and real world classification data sets.
Related papers
- Confidence Estimation via Sequential Likelihood Mixing [46.69347918899963]
We present a universal framework for constructing confidence sets based on sequential likelihood mixing.
We establish fundamental connections between sequential mixing, Bayesian inference and regret inequalities from online estimation.
We illustrate the power of the framework by deriving tighter confidence sequences for classical settings.
arXiv Detail & Related papers (2025-02-20T16:16:34Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond [37.894835756324454]
Federated averaging (FedAvg) is the most fundamental algorithm in Federated learning (FL)
Recent empirical results show that FedAvg can perform well in many real-world heterogeneous tasks.
We present a simple and effective FedAvg variant termed FedAWARE.
arXiv Detail & Related papers (2023-10-04T10:15:57Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
This paper extends the inference view and describes a variational inference formulation of federated learning.
We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
arXiv Detail & Related papers (2023-02-08T17:58:11Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Achieving Statistical Optimality of Federated Learning: Beyond
Stationary Points [19.891597817559038]
Federated Learning (FL) is a promising framework that has great potentials in privacy preservation and in lowering the computation load at the cloud.
Recent work raised concerns on two methods: (1) their fixed points do not correspond to the stationary points of the original optimization problem, and (2) the common model found might not generalize well locally.
We show, in the general kernel regression setting, that both FedAvg and FedProx converge to the minimax-optimal error rates.
arXiv Detail & Related papers (2021-06-29T09:59:43Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.