RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
- URL: http://arxiv.org/abs/2502.00848v2
- Date: Mon, 12 May 2025 11:27:38 GMT
- Title: RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
- Authors: Yuanhuiyi Lyu, Xu Zheng, Lutao Jiang, Yibo Yan, Xin Zou, Huiyu Zhou, Linfeng Zhang, Xuming Hu,
- Abstract summary: We present the first real-object-based retrieval-augmented generation framework (RealRAG)<n>RealRAG augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models.<n>Our framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation.
- Score: 29.909743116379936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
Related papers
- RAISE: Realness Assessment for Image Synthesis and Evaluation [3.7619101673213664]
We develop and train models on RAISE to establish baselines for realness prediction.<n>Our experimental results demonstrate that features derived from deep foundation vision models can effectively capture the subjective realness.
arXiv Detail & Related papers (2025-05-25T17:14:43Z) - HRR: Hierarchical Retrospection Refinement for Generated Image Detection [16.958383381415445]
We propose a diffusion model-based generative image detection framework termed Hierarchical Retrospection Refinement(HRR)
The HRR framework consistently delivers significant performance improvements, outperforming state-of-the-art methods in generated image detection task.
arXiv Detail & Related papers (2025-02-25T05:13:44Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.<n>We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data.<n>This often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns.<n>We propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives.
arXiv Detail & Related papers (2024-12-09T21:36:10Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
We conduct a systematic study on the fidelity of entities in text-to-image generation models.
We focus on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals.
Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details.
arXiv Detail & Related papers (2024-10-15T17:50:37Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - A Unified Generative Framework for Realistic Lidar Simulation in Autonomous Driving Systems [10.036860459686526]
Lidar is a widely used sensor type among the perception sensors for Autonomous Driving Systems.
Deep generative models have emerged as promising solutions to synthesise realistic sensory data.
We propose a unified generative framework to enhance Lidar simulation fidelity.
arXiv Detail & Related papers (2023-12-25T21:55:00Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - SlotDiffusion: Object-Centric Generative Modeling with Diffusion Models [47.986381326169166]
We introduce SlotDiffusion -- an object-centric Latent Diffusion Model (LDM) designed for both image and video data.
Thanks to the powerful modeling capacity of LDMs, SlotDiffusion surpasses previous slot models in unsupervised object segmentation and visual generation.
Our learned object features can be utilized by existing object-centric dynamics models, improving video prediction quality and downstream temporal reasoning tasks.
arXiv Detail & Related papers (2023-05-18T19:56:20Z) - DiffGAR: Model-Agnostic Restoration from Generative Artifacts Using
Image-to-Image Diffusion Models [46.46919194633776]
This work aims to develop a plugin post-processing module for diverse generative models.
Unlike traditional degradation patterns, generative artifacts are non-linear and the transformation function is highly complex.
arXiv Detail & Related papers (2022-10-16T16:08:47Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.