論文の概要: Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- arxiv url: http://arxiv.org/abs/2502.00935v2
- Date: Mon, 10 Feb 2025 05:37:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:23:55.873681
- Title: Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- Title(参考訳): 遅延空間到達可能性解析による衝突回避以外の安全性の一般化
- Authors: Kensuke Nakamura, Lasse Peters, Andrea Bajcsy,
- Abstract要約: Hamilton-Jacobi (J) は、ロボットが安全でない状態を同時に検出し、アクションを生成するための厳格なフレームワークである。
生観測データを直接操作するハミルトン・ヤコビ到達可能性の一般化であるLa-space Safety Filtersを提案する。
- 参考スコア(独自算出の注目度): 6.267574471145217
- License:
- Abstract: Hamilton-Jacobi (HJ) reachability is a rigorous mathematical framework that enables robots to simultaneously detect unsafe states and generate actions that prevent future failures. While in theory, HJ reachability can synthesize safe controllers for nonlinear systems and nonconvex constraints, in practice, it has been limited to hand-engineered collision-avoidance constraints modeled via low-dimensional state-space representations and first-principles dynamics. In this work, our goal is to generalize safe robot controllers to prevent failures that are hard -- if not impossible -- to write down by hand, but can be intuitively identified from high-dimensional observations: for example, spilling the contents of a bag. We propose Latent Safety Filters, a latent-space generalization of HJ reachability that tractably operates directly on raw observation data (e.g., RGB images) by performing safety analysis in the latent embedding space of a generative world model. This transforms nuanced constraint specification to a classification problem in latent space and enables reasoning about dynamical consequences that are hard to simulate. In simulation and hardware experiments, we use Latent Safety Filters to safeguard arbitrary policies (from generative policies to direct teleoperation) from complex safety hazards, like preventing a Franka Research 3 manipulator from spilling the contents of a bag or toppling cluttered objects.
- Abstract(参考訳): Hamilton-Jacobi (HJ) は、ロボットが安全でない状態を同時に検出し、将来の失敗を防ぐアクションを生成することができる厳密な数学的枠組みである。
理論上は、HJリーチビリティは非線形システムや非凸制約のための安全なコントローラを合成できるが、実際には、低次元状態空間表現と第一原理力学によってモデル化された手動衝突回避制約に限られている。
本研究の目的は,手書きで書き留めることが難しいが,高次元の観察から直感的に識別できる,例えばバッグの内容がこぼれてしまうような障害を防止するために,安全なロボットコントローラを一般化することである。
本稿では, 生観測データ(例えばRGB画像)を直接トラクタブルに操作するHJ到達可能性の潜在空間一般化である潜時安全フィルタについて, 生成世界のモデルにおいて潜時埋め込み空間で安全解析を行うことにより提案する。
これにより、ニュアンス制約仕様を潜在空間の分類問題に変換し、シミュレーションが難しい動的結果の推論を可能にする。
シミュレーションおよびハードウェア実験では、Latent Safety Filtersを使用して、複雑な安全上の危険から任意のポリシー(生成ポリシーから直接遠隔操作まで)を保護する。
関連論文リスト
- In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
この研究は、ロボットシステムのための堅牢な安全維持コントローラのスケーラブルな合成を可能にする新しいアプローチを導入する。
安全を追求するフォールバックポリシーは、モデルエラーの最悪のケースの実現を促進するために、敵の「混乱」エージェントと共同で訓練される。
学習した制御ポリシーは本質的に安全性を保証するものではないが、リアルタイムの安全フィルタを構築するために使用される。
論文 参考訳(メタデータ) (2022-12-06T18:53:34Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving [7.355977594790584]
自律運転における3次元物体検出器の安全性指向性能について考察する。
本稿では,単純だが重要な局所化要件を特徴付ける空間的制約 (USC) について述べる。
既存のモデルに対する安全性指向の微調整を可能にするために,定量的な測定値を共通損失関数に組み込む。
論文 参考訳(メタデータ) (2022-09-21T14:03:08Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Safe Reinforcement Learning Using Black-Box Reachability Analysis [20.875010584486812]
強化学習(Reinforcement Learning, RL)は、不確実な環境下でのロボットの動き計画と制御を高度に行うことができる。
広範な展開を正当化するためには、ロボットは性能を犠牲にすることなく安全上の制約を尊重しなければならない。
我々は3つの主要コンポーネントを持つブラックボックス到達可能性に基づく安全層(BRSL)を提案する。
論文 参考訳(メタデータ) (2022-04-15T10:51:09Z) - BarrierNet: A Safety-Guaranteed Layer for Neural Networks [50.86816322277293]
BarrierNetは、ニューラルコントローラの安全性の制約が環境の変化に適応できるようにする。
本研究では,2次元空間と3次元空間における交通統合やロボットナビゲーションといった一連の制御問題について評価する。
論文 参考訳(メタデータ) (2021-11-22T15:38:11Z) - Failing with Grace: Learning Neural Network Controllers that are
Boundedly Unsafe [18.34490939288318]
小型の作業空間で任意の形状のロボットを安全に操縦するために、フィードフォワードニューラルネットワーク(NN)コントローラを学習する問題を考察する。
本稿では,実際に満たすのが難しいデータに対して,そのような仮定を持ち上げるアプローチを提案する。
提案手法の有効性を検証したシミュレーション研究を提案する。
論文 参考訳(メタデータ) (2021-06-22T15:51:52Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
本論文は,確率論的安全保証者によるオンラインで実現可能な動作のマッピングと計画のための不確実性に基づくフレームワークを提案する。
提案手法は, 環境の不確実性を意識した環境表現を構築するために周囲をマッピングし, (i) 信念空間の多層サンプリングベースプランナーを通して, キノダイナミックに実現可能で確率論的に安全な目標に反復的に(re)計画を行うことにより, 動き, 確率論的安全性, オンライン計算制約を取り扱う。
論文 参考訳(メタデータ) (2020-04-26T08:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。