ModServe: Scalable and Resource-Efficient Large Multimodal Model Serving
- URL: http://arxiv.org/abs/2502.00937v2
- Date: Fri, 21 Mar 2025 16:53:47 GMT
- Title: ModServe: Scalable and Resource-Efficient Large Multimodal Model Serving
- Authors: Haoran Qiu, Anish Biswas, Zihan Zhao, Jayashree Mohan, Alind Khare, Esha Choukse, Íñigo Goiri, Zeyu Zhang, Haiying Shen, Chetan Bansal, Ramachandran Ramjee, Rodrigo Fonseca,
- Abstract summary: Large multimodal models (LMMs) demonstrate impressive capabilities in understanding images, videos, and audio beyond text.<n>We present the first comprehensive systems analysis of two prominent LMM architectures, decoder-only and cross-attention, across six representative open-source models.<n>We propose ModServe, a modular LMM serving system that decouples stages for independent optimization and adaptive scaling.
- Score: 19.388562622309838
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large multimodal models (LMMs) demonstrate impressive capabilities in understanding images, videos, and audio beyond text. However, efficiently serving LMMs in production environments poses significant challenges due to their complex architectures and heterogeneous characteristics across their multi-stage inference pipelines. We present the first comprehensive systems analysis of two prominent LMM architectures, decoder-only and cross-attention, across six representative open-source models, revealing key systems design implications. We also present an in-depth analysis of production LMM inference traces, uncovering unique workload characteristics, including variable, heavy-tailed request distributions and bursty traffic patterns. Based on these insights, we propose ModServe, a modular LMM serving system that decouples stages for independent optimization and adaptive scaling. ModServe dynamically reconfigures stages and handles bursty traffic with modality-aware scheduling and autoscaling to meet tail latency SLOs while minimizing costs. ModServe achieves 3.3-5.5x higher throughput (leading to 25-41.3% cost saving) while meeting SLOs on a 128-GPU cluster with production traces.
Related papers
- HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding [67.24430397016275]
We propose a new early-fusion LMM that can fuse multi-modal inputs in the early stage and respond to visual instructions in an auto-regressive manner.
The proposed model demonstrates superior performance compared to other LMMs using one transformer and significantly narrows the performance gap with compositional LMMs.
arXiv Detail & Related papers (2025-03-12T06:01:05Z) - DNN-Powered MLOps Pipeline Optimization for Large Language Models: A Framework for Automated Deployment and Resource Management [0.0]
This research presents a novel framework that leverages Deep Neural Networks (DNNs) to optimize MLOps pipelines for Large Language Models (LLMs)
Our approach introduces an intelligent system that automates deployment decisions, resource allocation, and pipeline optimization while maintaining optimal performance and cost efficiency.
arXiv Detail & Related papers (2025-01-14T14:15:32Z) - LLaVA Steering: Visual Instruction Tuning with 500x Fewer Parameters through Modality Linear Representation-Steering [30.51487692912812]
Multimodal Large Language Models (MLLMs) have significantly advanced visual tasks by integrating visual representations into large language models (LLMs)
We introduce Modality Linear Representation-Steering (MoReS) to achieve the goal.
MoReS effectively re-balances the intrinsic modalities throughout the model, where the key idea is to steer visual representations through linear transformations in the visual subspace across each model layer.
arXiv Detail & Related papers (2024-12-16T21:14:11Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - xGen-MM (BLIP-3): A Family of Open Large Multimodal Models [157.44696790158784]
This report introduces xGen-MM, a framework for developing Large Multimodal Models (LMMs)
The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs.
Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks.
arXiv Detail & Related papers (2024-08-16T17:57:01Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.
A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.
In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
Diffusion models, emerging as powerful deep generative tools, excel in various applications.
However, their remarkable generative performance is hindered by slow training and sampling.
This is due to the necessity of tracking extensive forward and reverse diffusion trajectories.
We present a multi-stage framework inspired by our empirical findings to tackle these challenges.
arXiv Detail & Related papers (2023-12-14T17:48:09Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.