SAM-guided Pseudo Label Enhancement for Multi-modal 3D Semantic Segmentation
- URL: http://arxiv.org/abs/2502.00960v1
- Date: Sun, 02 Feb 2025 23:52:37 GMT
- Title: SAM-guided Pseudo Label Enhancement for Multi-modal 3D Semantic Segmentation
- Authors: Mingyu Yang, Jitong Lu, Hun-Seok Kim,
- Abstract summary: Multi-modal 3D semantic segmentation is vital for applications such as autonomous driving and virtual reality (VR)
To effectively deploy these models in real-world scenarios, it is essential to employ cross-domain adaptation techniques.
Self-training with pseudo-labels has emerged as a predominant method for cross-domain adaptation in 3D semantic segmentation.
- Score: 16.019735682706163
- License:
- Abstract: Multi-modal 3D semantic segmentation is vital for applications such as autonomous driving and virtual reality (VR). To effectively deploy these models in real-world scenarios, it is essential to employ cross-domain adaptation techniques that bridge the gap between training data and real-world data. Recently, self-training with pseudo-labels has emerged as a predominant method for cross-domain adaptation in multi-modal 3D semantic segmentation. However, generating reliable pseudo-labels necessitates stringent constraints, which often result in sparse pseudo-labels after pruning. This sparsity can potentially hinder performance improvement during the adaptation process. We propose an image-guided pseudo-label enhancement approach that leverages the complementary 2D prior knowledge from the Segment Anything Model (SAM) to introduce more reliable pseudo-labels, thereby boosting domain adaptation performance. Specifically, given a 3D point cloud and the SAM masks from its paired image data, we collect all 3D points covered by each SAM mask that potentially belong to the same object. Then our method refines the pseudo-labels within each SAM mask in two steps. First, we determine the class label for each mask using majority voting and employ various constraints to filter out unreliable mask labels. Next, we introduce Geometry-Aware Progressive Propagation (GAPP) which propagates the mask label to all 3D points within the SAM mask while avoiding outliers caused by 2D-3D misalignment. Experiments conducted across multiple datasets and domain adaptation scenarios demonstrate that our proposed method significantly increases the quantity of high-quality pseudo-labels and enhances the adaptation performance over baseline methods.
Related papers
- Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion [31.736235596070937]
We present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF)
MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments.
Our proposed MSF module mines comprehensive and diversified correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates.
arXiv Detail & Related papers (2024-08-26T17:15:37Z) - Segment, Lift and Fit: Automatic 3D Shape Labeling from 2D Prompts [50.181870446016376]
This paper proposes an algorithm for automatically labeling 3D objects from 2D point or box prompts.
Unlike previous arts, our auto-labeler predicts 3D shapes instead of bounding boxes and does not require training on a specific dataset.
arXiv Detail & Related papers (2024-07-16T04:53:28Z) - Efficient 3D Instance Mapping and Localization with Neural Fields [39.73128916618561]
We tackle the problem of learning an implicit scene representation for 3D instance segmentation from a sequence of posed RGB images.
We introduce 3DIML, a novel framework that efficiently learns a neural label field which can render 3D instance segmentation masks from novel viewpoints.
arXiv Detail & Related papers (2024-03-28T19:25:25Z) - Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection [108.672972439282]
We introduce a novel decoupled pseudo-labeling (DPL) approach for SSM3OD.
Our approach features a Decoupled Pseudo-label Generation (DPG) module, designed to efficiently generate pseudo-labels.
We also present a DepthGradient Projection (DGP) module to mitigate optimization conflicts caused by noisy depth supervision of pseudo-labels.
arXiv Detail & Related papers (2024-03-26T05:12:18Z) - Visual Foundation Models Boost Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation [17.875516787157018]
We study how to harness the knowledge priors learned by 2D visual foundation models to produce more accurate labels for unlabeled target domains.
Our method is evaluated on various autonomous driving datasets and the results demonstrate a significant improvement for 3D segmentation task.
arXiv Detail & Related papers (2024-03-15T03:58:17Z) - 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling [37.315964084413174]
We develop a domain adaptation framework via generating reliable pseudo ground truths of depth from real data to provide direct supervisions.
Specifically, we propose two mechanisms for pseudo-labeling: 1) 2D-based pseudo-labels via measuring the consistency of depth predictions when images are with the same content but different styles; 2) 3D-aware pseudo-labels via a point cloud completion network that learns to complete the depth values in the 3D space.
arXiv Detail & Related papers (2022-09-19T17:54:17Z) - Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning [59.64695628433855]
We propose a novel cross-modality weakly supervised method for 3D segmentation, incorporating complementary information from unlabeled images.
Basically, we design a dual-branch network equipped with an active labeling strategy, to maximize the power of tiny parts of labels.
Our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
arXiv Detail & Related papers (2022-09-16T07:59:04Z) - MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation [104.48766162008815]
We propose and explore a new multi-modal extension of test-time adaptation for 3D semantic segmentation.
To design a framework that can take full advantage of multi-modality, each modality provides regularized self-supervisory signals to other modalities.
Our regularized pseudo labels produce stable self-learning signals in numerous multi-modal test-time adaptation scenarios.
arXiv Detail & Related papers (2022-04-27T02:28:12Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.