論文の概要: CoDe: Blockwise Control for Denoising Diffusion Models
- arxiv url: http://arxiv.org/abs/2502.00968v1
- Date: Mon, 03 Feb 2025 00:23:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:22.833404
- Title: CoDe: Blockwise Control for Denoising Diffusion Models
- Title(参考訳): CoDe:拡散モデルのブロックワイズ制御
- Authors: Anuj Singh, Sayak Mukherjee, Ahmad Beirami, Hadi Jamali-Rad,
- Abstract要約: 下流タスクへの拡散モデルをアライメントするには、しばしば推論時に新しいモデルや勾配に基づくガイダンスを微調整する必要がある。
本研究では,制御デノイング(CoDe)と呼ばれる単純な推論時間勾配自由誘導手法について検討する。
CoDeは中間復調段階に適用されるブロックワイズサンプリング手法であり、下流の報酬とアライメントすることができる。
- 参考スコア(独自算出の注目度): 9.235074675079767
- License:
- Abstract: Aligning diffusion models to downstream tasks often requires finetuning new models or gradient-based guidance at inference time to enable sampling from the reward-tilted posterior. In this work, we explore a simple inference-time gradient-free guidance approach, called controlled denoising (CoDe), that circumvents the need for differentiable guidance functions and model finetuning. CoDe is a blockwise sampling method applied during intermediate denoising steps, allowing for alignment with downstream rewards. Our experiments demonstrate that, despite its simplicity, CoDe offers a favorable trade-off between reward alignment, prompt instruction following, and inference cost, achieving a competitive performance against the state-of-the-art baselines. Our code is available at: https://github.com/anujinho/code.
- Abstract(参考訳): 下流タスクへの拡散モデルの調整には、報酬型後部からのサンプリングを可能にするために、しばしば推論時に新しいモデルや勾配に基づくガイダンスを微調整する必要がある。
そこで本研究では,モデルファインタニングや微分可能な誘導関数の必要性を回避するために,制御デノナイジング(CoDe)と呼ばれる単純な推論時間勾配のない誘導手法を提案する。
CoDeは中間復調段階に適用されるブロックワイズサンプリング手法であり、下流の報酬とアライメントすることができる。
我々の実験は、その単純さにもかかわらず、CoDeは報酬の整合性、指導の迅速化、推論コストとの良好なトレードオフを提供し、最先端のベースラインに対する競争性能を達成することを実証している。
私たちのコードは、https://github.com/anujinho/code.comで利用可能です。
関連論文リスト
- Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
提案手法は,報酬関数やモデル再学習を介さずに,推論時の復調過程を導出するための最適化手法である。
提案手法は,高報酬に対応する領域の密度を最適化することにより,雑音分布の制御を行う。
我々の知る限り、提案手法は拡散モデルに対する最初の推論時間、バックプロパゲーションフリーな選好アライメント法である。
論文 参考訳(メタデータ) (2024-10-08T07:33:49Z) - ConsistencyDet: A Robust Object Detector with a Denoising Paradigm of Consistency Model [28.193325656555803]
本稿では,物体検出を認知拡散過程として記述するための新しいフレームワークを提案する。
ConsistencyDetと呼ばれるこのフレームワークは、Consistency Modelとして知られる革新的な概念を活用している。
我々は、ConsistencyDetがパフォーマンス指標で他の最先端検出器を上回っていることを示す。
論文 参考訳(メタデータ) (2024-04-11T14:08:45Z) - Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance [9.975341265604577]
深層ニューラルネットワークのトレーニングは、画像復元問題に対処するための一般的なアプローチとなっている。
低ノイズ環境では、バックプロジェクション(BP)に基づくガイダンスが有望な戦略であることが示されている。
本稿では,BPベースのガイダンスから少なくとも2乗のガイダンスへのトラバースを可能にする,事前条件に基づく新しいガイダンス手法を提案する。
論文 参考訳(メタデータ) (2023-12-27T10:57:03Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
DNMOTは、複数のオブジェクト追跡のためのエンドツーエンドのトレーニング可能なDeNoising Transformerである。
具体的には、トレーニング中にノイズを伴って軌道を拡大し、エンコーダ・デコーダアーキテクチャのデノイング過程をモデルに学習させる。
我々はMOT17,MOT20,DanceTrackのデータセットについて広範な実験を行い,実験結果から,提案手法が従来の最先端手法よりも明確なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-09-09T04:40:01Z) - DR-Tune: Improving Fine-tuning of Pretrained Visual Models by
Distribution Regularization with Semantic Calibration [38.4461170690033]
セマンティックキャリブレーションを用いた分布正規化(DR-Tune)という,新しい微調整フレームワークを提案する。
DR-Tuneは、下流タスクヘッドを強制して、事前訓練された特徴分布の分類誤差を低減することで、分散正則化を採用する。
セマンティックドリフトによる干渉を軽減するため,セマンティックキャリブレーション(SC)モジュールを開発した。
論文 参考訳(メタデータ) (2023-08-23T10:59:20Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。