論文の概要: Exploiting the Exact Denoising Posterior Score in Training-Free Guidance of Diffusion Models
- arxiv url: http://arxiv.org/abs/2506.13614v1
- Date: Mon, 16 Jun 2025 15:43:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:48.887147
- Title: Exploiting the Exact Denoising Posterior Score in Training-Free Guidance of Diffusion Models
- Title(参考訳): ディフュージョンモデルのトレーニング自由誘導における練習後スコアの有効活用
- Authors: Gregory Bellchambers,
- Abstract要約: Diffusion Posterior Smpling (DPS) に基づく一般的な手法のクラスは、難解な後楽譜関数を直接近似しようとする。
非条件のスコア関数で抽出可能なタスクを純粋に分解するための、正確な後部スコアに対する新しい表現を提案する。
これらのステップサイズは、色付け、ランダムな塗布、超解像などの関連する逆問題に転送可能であることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The success of diffusion models has driven interest in performing conditional sampling via training-free guidance of the denoising process to solve image restoration and other inverse problems. A popular class of methods, based on Diffusion Posterior Sampling (DPS), attempts to approximate the intractable posterior score function directly. In this work, we present a novel expression for the exact posterior score for purely denoising tasks that is tractable in terms of the unconditional score function. We leverage this result to analyze the time-dependent error in the DPS score for denoising tasks and compute step sizes on the fly to minimize the error at each time step. We demonstrate that these step sizes are transferable to related inverse problems such as colorization, random inpainting, and super resolution. Despite its simplicity, this approach is competitive with state-of-the-art techniques and enables sampling with fewer time steps than DPS.
- Abstract(参考訳): 拡散モデルの成功は、画像復元やその他の逆問題を解決するために、デノナイジングプロセスのトレーニング不要ガイダンスを通じて条件付きサンプリングを実行することに関心を惹き付けている。
Diffusion Posterior Smpling (DPS) に基づく一般的な手法のクラスは、難解な後楽譜関数を直接近似しようとする。
本研究では,無条件のスコア関数で抽出可能なタスクを純粋に記述するための,正確な後部スコアに対する新しい表現を提案する。
この結果を利用して、DPSスコアの時間依存誤差を分析し、タスクをデノナイズし、フライ時のステップサイズを計算し、各タイムステップにおけるエラーを最小限に抑える。
これらのステップサイズは、色付け、ランダムな塗布、超解像などの関連する逆問題に転送可能であることを実証する。
その単純さにもかかわらず、このアプローチは最先端の技術と競合し、DPSよりも少ない時間ステップでサンプリングできる。
関連論文リスト
- Noise Conditional Variational Score Distillation [60.38982038894823]
騒音条件変化スコア蒸留(NCVSD)は, 予混合拡散モデルから生成消音剤を蒸留する新しい方法である。
この知見を変分スコア蒸留フレームワークに組み込むことで、生成的デノイザのスケーラブルな学習を可能にする。
論文 参考訳(メタデータ) (2025-06-11T06:01:39Z) - Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
拡散モデルは視覚生成のための強力な基礎モデルとして登場してきた。
現在の後方サンプリングに基づく手法では、測定結果を後方サンプリングに取り込み、対象データの分布を推定する。
本研究は, 早期に高周波情報を早期に導入し, より大きい推定誤差を生じさせることを示す。
工芸品計測を取り入れた新しい拡散後サンプリング手法DPS-CMを提案する。
論文 参考訳(メタデータ) (2024-11-15T00:06:57Z) - Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
Decoupled Annealing Posterior Smpling (DAPS) と呼ばれる新しい手法を提案する。
DAPSは、新しいノイズアニール法に依存している。
DAPSは複数の画像復元作業において,サンプル品質と安定性を著しく向上することを示した。
論文 参考訳(メタデータ) (2024-07-01T17:59:23Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
拡散確率モデル (DPM) は高品質な画像の合成において顕著な有効性を示した。
これまでの研究は、トレーニング中に入力を摂動することでこの問題を緩和しようと試みてきた。
モデルを再学習することなく,提案する新しいサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T21:39:27Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。