CausalCOMRL: Context-Based Offline Meta-Reinforcement Learning with Causal Representation
- URL: http://arxiv.org/abs/2502.00983v1
- Date: Mon, 03 Feb 2025 01:43:54 GMT
- Title: CausalCOMRL: Context-Based Offline Meta-Reinforcement Learning with Causal Representation
- Authors: Zhengzhe Zhang, Wenjia Meng, Haoliang Sun, Gang Pan,
- Abstract summary: CausalCOMRL is a context-based OMRL method that integrates causal representation learning.
We show that CausalCOMRL achieves better performance than other methods on most benchmarks.
- Score: 13.575628222213387
- License:
- Abstract: Context-based offline meta-reinforcement learning (OMRL) methods have achieved appealing success by leveraging pre-collected offline datasets to develop task representations that guide policy learning. However, current context-based OMRL methods often introduce spurious correlations, where task components are incorrectly correlated due to confounders. These correlations can degrade policy performance when the confounders in the test task differ from those in the training task. To address this problem, we propose CausalCOMRL, a context-based OMRL method that integrates causal representation learning. This approach uncovers causal relationships among the task components and incorporates the causal relationships into task representations, enhancing the generalizability of RL agents. We further improve the distinction of task representations from different tasks by using mutual information optimization and contrastive learning. Utilizing these causal task representations, we employ SAC to optimize policies on meta-RL benchmarks. Experimental results show that CausalCOMRL achieves better performance than other methods on most benchmarks.
Related papers
- Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning [61.8360232713375]
We propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning.
We present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning.
Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies.
arXiv Detail & Related papers (2024-09-27T18:22:22Z) - Rethinking Meta-Learning from a Learning Lens [15.36934812747678]
We focus on the more fundamental learning to learn strategy of meta-learning to explore what causes errors and how to eliminate these errors without changing the environment.
We propose using task relations to calibrate the optimization process of meta-learning and propose a plug-and-play method called Task Relation Learner (TRLearner) to achieve this goal.
arXiv Detail & Related papers (2024-09-13T02:00:16Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
We show that COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds.
As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks.
This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
arXiv Detail & Related papers (2024-02-04T09:58:42Z) - Hacking Task Confounder in Meta-Learning [18.179340061914708]
We propose a plug-and-play Meta-learning Causal Representation (MetaCRL) to eliminate task confounders.
Our work achieves state-of-the-art (SOTA) performance on benchmark datasets.
arXiv Detail & Related papers (2023-12-10T05:33:40Z) - On Context Distribution Shift in Task Representation Learning for
Offline Meta RL [7.8317653074640186]
We focus on context-based OMRL, specifically on the challenge of learning task representation for OMRL.
To overcome this problem, we present a hard-sampling-based strategy to train a robust task context encoder.
arXiv Detail & Related papers (2023-04-01T16:21:55Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.