論文の概要: A generative foundation model for an all-in-one seismic processing framework
- arxiv url: http://arxiv.org/abs/2502.01111v1
- Date: Mon, 03 Feb 2025 07:01:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:18.935333
- Title: A generative foundation model for an all-in-one seismic processing framework
- Title(参考訳): オールインワン地震処理フレームワークのための生成基礎モデル
- Authors: Shijun Cheng, Randy Harsuko, Tariq Alkhalifah,
- Abstract要約: 生成的震源モデル(GSFM)は、生成的拡散モデル(GDM)に基づく統一的な枠組みである
目標指向拡散過程予測を採用することにより、GSFMは精度を損なうことなく計算効率を向上させる。
- 参考スコア(独自算出の注目度): 2.499907423888049
- License:
- Abstract: Seismic data often face challenges in their utilization due to noise contamination, incomplete acquisition, and limited low-frequency information, which hinder accurate subsurface imaging and interpretation. Traditional processing methods rely heavily on task-specific designs to address these challenges and fail to account for the variability of data. To address these limitations, we present a generative seismic foundation model (GSFM), a unified framework based on generative diffusion models (GDMs), designed to tackle multi-task seismic processing challenges, including denoising, backscattered noise attenuation, interpolation, and low-frequency extrapolation. GSFM leverages a pre-training stage on synthetic data to capture the features of clean, complete, and broadband seismic data distributions and applies an iterative fine-tuning strategy to adapt the model to field data. By adopting a target-oriented diffusion process prediction, GSFM improves computational efficiency without compromising accuracy. Synthetic data tests demonstrate GSFM surpasses benchmarks with equivalent architectures in all tasks and achieves performance comparable to traditional pre-training strategies, even after their fine-tuning. Also, field data tests suggest that our iterative fine-tuning approach addresses the generalization limitations of conventional pre-training and fine-tuning paradigms, delivering significantly enhanced performance across diverse tasks. Furthermore, GSFM's inherent probabilistic nature enables effective uncertainty quantification, offering valuable insights into the reliability of processing results.
- Abstract(参考訳): 地震データはしばしば、ノイズ汚染、不完全取得、低周波情報の制限による利用上の課題に直面しており、正確な地下イメージングや解釈を妨げている。
従来の処理方法は、これらの課題に対処するためにタスク固有の設計に大きく依存しており、データの多様性を考慮できない。
これらの制約に対処するために、生成拡散モデル(GDM)に基づく統合フレームワークである生成震源モデル(GSFM)を提案し、ノイズ減衰、補間、低周波外挿などのマルチタスク地震処理課題に対処する。
GSFMは、合成データの事前学習段階を利用して、クリーンで完全でブロードバンドな地震データ分布の特徴を捉え、モデルのフィールドデータへの適応に反復的な微調整戦略を適用している。
目標指向拡散過程予測を採用することにより、GSFMは精度を損なうことなく計算効率を向上させる。
合成データテストでは、GSFMはすべてのタスクで同等のアーキテクチャを持つベンチマークを超越し、微調整後の従来の事前トレーニング戦略に匹敵するパフォーマンスを実現している。
また、フィールドデータテストにより、従来の事前学習および微調整のパラダイムの一般化の限界に対処し、多様なタスクに対して大幅な性能向上を実現することが示唆された。
さらに、GSFMの本質的な確率的性質は、有効な不確実性定量化を可能にし、処理結果の信頼性に関する貴重な洞察を提供する。
関連論文リスト
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
本稿では,拡張性のある並列計算を可能にするアルゴリズム PISA を開発し,様々な第2モーメント方式をサポートする。
厳密な理論的な保証の下で、アルゴリズムは勾配のリプシッツの唯一の仮定の下で収束する。
視覚モデル、大規模言語モデル、強化学習モデル、生成的敵ネットワーク、繰り返しニューラルネットワークを含む様々なFMの総合的または微調整実験は、様々な最先端の方向と比較して優れた数値性能を示す。
論文 参考訳(メタデータ) (2025-02-15T12:28:51Z) - RobustFT: Robust Supervised Fine-tuning for Large Language Models under Noisy Response [23.45168175163634]
監視された微調整(SFT)は、特定のドメインやタスクに大規模言語モデル(LLM)を適用する上で重要な役割を果たす。
本稿では,下流のタスクデータに対してノイズ検出とレバーベリングを行う頑健なSFTフレームワーク(RobustFT)を提案する。
5つのデータセットにわたる複数のLLMで実施された大規模な実験は、ノイズの多いシナリオにおけるRobostFTの例外的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-12-19T15:00:18Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
本稿では,厳密な確率的枠組みの中で自然に付加的な雑音を取り入れた一般化拡散モデルを提案する。
我々は、ある調整でノイズを相殺する理論的等価性を確立し、証拠の低い境界に基づいて損失関数を導出する。
合成データセットの実験により、我々のモデルは輝度に関する課題に効果的に対処し、高次元シナリオにおいて従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-12-04T08:57:03Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model
for Fault Recognition [13.339333273943842]
本稿では,自己教師付き事前学習による地震断層認識の高度化手法を提案する。
我々は,Swin Transformerモデルをコアネットワークとして採用し,SimMIMプレトレーニングタスクを用いて,地震データにおける不連続性に関連する特徴を抽出した。
実験の結果,提案手法は,OISおよびODS測定値から,Thebeデータセット上での最先端性能を実現することができた。
論文 参考訳(メタデータ) (2023-10-27T08:38:59Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。