論文の概要: Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless Networks
- arxiv url: http://arxiv.org/abs/2502.01129v1
- Date: Mon, 03 Feb 2025 07:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:21.309291
- Title: Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless Networks
- Title(参考訳): 無線ネットワークにおける動的資源配分のための深層強化学習
- Authors: Shubham Malhotra,
- Abstract要約: 本報告では,無線通信システムにおける動的リソース割り当てに対する深部強化学習(DRL)アルゴリズムの適用について検討する。
アルゴリズムと学習率の選択はシステム性能に大きく影響を与え、DRLは従来の手法よりも効率的なリソース割り当てを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This report investigates the application of deep reinforcement learning (DRL) algorithms for dynamic resource allocation in wireless communication systems. An environment that includes a base station, multiple antennas, and user equipment is created. Using the RLlib library, various DRL algorithms such as Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) are then applied. These algorithms are compared based on their ability to optimize resource allocation, focusing on the impact of different learning rates and scheduling policies. The findings demonstrate that the choice of algorithm and learning rate significantly influences system performance, with DRL providing more efficient resource allocation compared to traditional methods.
- Abstract(参考訳): 本報告では,無線通信システムにおける動的リソース割り当てに対する深部強化学習(DRL)アルゴリズムの適用について検討する。
基地局、複数のアンテナ、ユーザ機器を含む環境を作成する。
RLlibライブラリを使用すると、Deep Q-Network (DQN) やPPO (Pximal Policy Optimization) といった様々なDRLアルゴリズムが適用される。
これらのアルゴリズムは、リソース割り当てを最適化する能力に基づいて比較され、異なる学習率とスケジューリングポリシーの影響に焦点を当てる。
その結果,アルゴリズムの選択と学習速度はシステム性能に大きく影響し,DRLは従来の手法よりも効率的な資源配分を提供することがわかった。
関連論文リスト
- Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
資源配分はV2Xネットワークの性能に大きな影響を及ぼす。
リソース割り当てのための既存のアルゴリズムのほとんどは、最適化や機械学習に基づいている。
本稿では,連合型強化学習の枠組みの下で,V2Xネットワークにおける資源配分について検討する。
論文 参考訳(メタデータ) (2023-10-15T15:26:54Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
深部強化学習のための新しいアルゴリズムを提案する。
これは、政治的に成功したディープRLアルゴリズムである、微分可能な信頼領域層に基づいている。
複雑なロボット制御タスクにおいて,ERLアルゴリズムと最先端のステップベースアルゴリズムを比較した。
論文 参考訳(メタデータ) (2022-10-18T06:34:52Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Deep Reinforcement Learning for Resource Constrained Multiclass
Scheduling in Wireless Networks [0.0]
セットアップでは、ランダムに到着するサービス要求に対応するために、利用可能な限られた帯域幅のリソースを割り当てます。
本稿では,Deep Setsと組み合わせた分布型Deep Deterministic Policy Gradient (DDPG)アルゴリズムを提案する。
提案アルゴリズムは, 合成データと実データの両方で検証し, 従来手法に対する一貫した利得を示す。
論文 参考訳(メタデータ) (2020-11-27T09:49:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
オンラインリソーススケジューリングフレームワークは、IoT(Internet of Things)の全ユーザに対して、重み付けされたタスクレイテンシの総和を最小化するために提案されている。
以下を含む深層強化学習(DRL)に基づく解法を提案する。
DRLがポリシーネットワークをトレーニングし、最適なオフロードポリシーを見つけるのを支援するために、保存および優先されたエクスペリエンスリプレイ(2p-ER)を導入する。
論文 参考訳(メタデータ) (2020-01-24T23:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。