論文の概要: Federated Reinforcement Learning for Resource Allocation in V2X Networks
- arxiv url: http://arxiv.org/abs/2310.09858v1
- Date: Sun, 15 Oct 2023 15:26:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 17:40:35.153864
- Title: Federated Reinforcement Learning for Resource Allocation in V2X Networks
- Title(参考訳): V2Xネットワークにおける資源配分のためのフェデレーション強化学習
- Authors: Kaidi Xu, Shenglong Zhou, and Geoffrey Ye Li
- Abstract要約: 資源配分はV2Xネットワークの性能に大きな影響を及ぼす。
リソース割り当てのための既存のアルゴリズムのほとんどは、最適化や機械学習に基づいている。
本稿では,連合型強化学習の枠組みの下で,V2Xネットワークにおける資源配分について検討する。
- 参考スコア(独自算出の注目度): 46.6256432514037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resource allocation significantly impacts the performance of
vehicle-to-everything (V2X) networks. Most existing algorithms for resource
allocation are based on optimization or machine learning (e.g., reinforcement
learning). In this paper, we explore resource allocation in a V2X network under
the framework of federated reinforcement learning (FRL). On one hand, the usage
of RL overcomes many challenges from the model-based optimization schemes. On
the other hand, federated learning (FL) enables agents to deal with a number of
practical issues, such as privacy, communication overhead, and exploration
efficiency. The framework of FRL is then implemented by the inexact alternative
direction method of multipliers (ADMM), where subproblems are solved
approximately using policy gradients and accelerated by an adaptive step size
calculated from their second moments. The developed algorithm, PASM, is proven
to be convergent under mild conditions and has a nice numerical performance
compared with some baseline methods for solving the resource allocation problem
in a V2X network.
- Abstract(参考訳): 資源配分はV2Xネットワークの性能に大きな影響を及ぼす。
リソース割り当てのための既存のアルゴリズムのほとんどは最適化や機械学習(強化学習など)に基づいている。
本稿では,フェデレート強化学習(FRL)の枠組みの下で,V2Xネットワークにおける資源配分について検討する。
一方、RLの使用はモデルベースの最適化スキームから多くの課題を克服する。
一方、連合学習(federated learning:fl)は、エージェントがプライバシ、通信オーバーヘッド、探索効率など、多くの実用的な問題に対処することを可能にする。
FRLのフレームワークは、不正確な乗算器の代替方向法(ADMM)によって実装され、サブプロブレムはポリシー勾配を用いてほぼ解決され、第2モーメントから計算された適応ステップサイズによって加速される。
開発アルゴリズムPASMは, 緩やかな条件下で収束することが証明され, V2Xネットワークにおける資源配分問題の解法に比べて, 優れた数値計算性能を有する。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN [5.1435595246496595]
本稿では資源配分問題に対する革新的なアプローチを紹介する。
Open Radio Access Network (O-RAN) におけるネットワークスライシングとリソース割り当てのために、複数の独立したx-appplications (xAPPs) を協調することを目的としている。
論文 参考訳(メタデータ) (2024-01-16T22:23:27Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
我々は,無線通信における多くの問題に固有の2種類のリレーショナル先行性を活用するために,グラフ強化学習を利用する。
グラフ強化学習フレームワークを体系的に設計するために,まず状態行列を状態グラフに変換する方法を提案する。
次に,所望の置換特性を満たすグラフニューラルネットワークの汎用手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T08:02:54Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
デバイス間通信(D2D)を用いたマルチチャネルセルシステムにおいて,リソース割り当ての最適化のためのフレームワークを提案する。
任意のチャネル条件に対する最適な資源配分戦略をディープニューラルネットワーク(DNN)モデルにより近似する深層学習(DL)フレームワークを提案する。
シミュレーションの結果,提案手法のリアルタイム性能を低速で実現できることが確認された。
論文 参考訳(メタデータ) (2020-11-25T14:19:23Z) - DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation
for Network Slicing [20.723527476555574]
ネットワークスライシングにより、同じ物理インフラストラクチャ上で複数の仮想ネットワークが動作し、5G以降のさまざまなユースケースをサポートすることができる。
これらのユースケースには、通信や計算、レイテンシやスループットといったさまざまなパフォーマンス指標など、非常に多様なネットワークリソース要求があります。
乗算器の交互方向法(ADMM)と深部強化学習(DRL)を統合したDeepSlicingを提案する。
論文 参考訳(メタデータ) (2020-08-17T20:52:19Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。