Insights from Network Science can advance Deep Graph Learning
- URL: http://arxiv.org/abs/2502.01177v1
- Date: Mon, 03 Feb 2025 09:11:35 GMT
- Title: Insights from Network Science can advance Deep Graph Learning
- Authors: Christopher Blöcker, Martin Rosvall, Ingo Scholtes, Jevin D. West,
- Abstract summary: We discuss challenges in deep graph learning, including data augmentation, improved evaluation practices, higher-order models, and pooling methods.
We highlight challenges in network science, including scaling to massive graphs, integrating continuous gradient-based optimization, and developing standardized benchmarks.
- Score: 1.8249324194382754
- License:
- Abstract: Deep graph learning and network science both analyze graphs but approach similar problems from different perspectives. Whereas network science focuses on models and measures that reveal the organizational principles of complex systems with explicit assumptions, deep graph learning focuses on flexible and generalizable models that learn patterns in graph data in an automated fashion. Despite these differences, both fields share the same goal: to better model and understand patterns in graph-structured data. Early efforts to integrate methods, models, and measures from network science and deep graph learning indicate significant untapped potential. In this position, we explore opportunities at their intersection. We discuss open challenges in deep graph learning, including data augmentation, improved evaluation practices, higher-order models, and pooling methods. Likewise, we highlight challenges in network science, including scaling to massive graphs, integrating continuous gradient-based optimization, and developing standardized benchmarks.
Related papers
- Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
We introduce a novel taxonomy for existing studies of directed graph learning.
We re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation.
We identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
arXiv Detail & Related papers (2024-11-28T06:09:12Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Machine Learning on Graphs: A Model and Comprehensive Taxonomy [22.73365477040205]
We bridge the gap between graph neural networks, network embedding and graph regularization models.
Specifically, we propose a Graph Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs.
arXiv Detail & Related papers (2020-05-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.