Theoretical Analysis of KL-regularized RLHF with Multiple Reference Models
- URL: http://arxiv.org/abs/2502.01203v1
- Date: Mon, 03 Feb 2025 09:50:30 GMT
- Title: Theoretical Analysis of KL-regularized RLHF with Multiple Reference Models
- Authors: Gholamali Aminian, Amir R. Asadi, Idan Shenfeld, Youssef Mroueh,
- Abstract summary: We introduce a comprehensive theoretical framework that includes rigorous statistical analysis and provides sample complexity guarantees.
We extend our analysis to forward KL-regularized RLHF, offering new insights into sample complexity requirements.
- Score: 17.8627908893654
- License:
- Abstract: Recent methods for aligning large language models (LLMs) with human feedback predominantly rely on a single reference model, which limits diversity, model overfitting, and underutilizes the wide range of available pre-trained models. Incorporating multiple reference models has the potential to address these limitations by broadening perspectives, reducing bias, and leveraging the strengths of diverse open-source LLMs. However, integrating multiple reference models into reinforcement learning with human feedback (RLHF) frameworks poses significant theoretical challenges, particularly in reverse KL-regularization, where achieving exact solutions has remained an open problem. This paper presents the first \emph{exact solution} to the multiple reference model problem in reverse KL-regularized RLHF. We introduce a comprehensive theoretical framework that includes rigorous statistical analysis and provides sample complexity guarantees. Additionally, we extend our analysis to forward KL-regularized RLHF, offering new insights into sample complexity requirements in multiple reference scenarios. Our contributions lay the foundation for more advanced and adaptable LLM alignment techniques, enabling the effective use of multiple reference models. This work paves the way for developing alignment frameworks that are both theoretically sound and better suited to the challenges of modern AI ecosystems.
Related papers
- Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - On the Generalization of Preference Learning with DPO [17.420727709895736]
Large language models (LLMs) have demonstrated remarkable capabilities but often struggle to align with human preferences.
Preference learning trains models to distinguish between preferred and non-preferred responses based on human feedback.
This paper introduces a new theoretical framework to analyze the generalization guarantees of models trained with direct preference optimization (DPO)
arXiv Detail & Related papers (2024-08-06T22:11:00Z) - LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations [51.76373105981212]
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.
We introduce a comprehensive reranking framework, designed to seamlessly integrate various reranking criteria.
A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs.
arXiv Detail & Related papers (2024-06-18T09:29:18Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
We propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder.
ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes.
DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space.
arXiv Detail & Related papers (2024-06-10T09:03:17Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
arXiv Detail & Related papers (2024-02-15T18:58:31Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.