UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality
- URL: http://arxiv.org/abs/2503.10669v1
- Date: Mon, 10 Mar 2025 09:52:42 GMT
- Title: UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality
- Authors: Zelei Cheng, Xin-Qiang Cai, Yuting Tang, Pushi Zhang, Boming Yang, Xinyu Xing,
- Abstract summary: Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models with human values.<n>Existing approaches struggle to capture the multi-dimensional, distributional nuances of human preferences.<n>We introduce Utility-Conditioned Multi-Objective Alignment (UC-MOA), a novel framework that overcomes these limitations.
- Score: 15.53963063493065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models (LLMs) with human values. However, existing approaches struggle to capture the multi-dimensional, distributional nuances of human preferences. Methods such as RiC that directly inject raw reward values into prompts face significant numerical sensitivity issues--for instance, LLMs may fail to distinguish between 9.11 and 9.8--while alternatives like MORLHF, Rewarded Soups, and MODPO incur high computational costs by training multiple models. In this work, we introduce Utility-Conditioned Multi-Objective Alignment (UC-MOA), a novel framework that overcomes these limitations. Our approach leverages a diverse set of strictly increasing, non-linear utility functions to transform user-specified preferences into symbolic tokens, which are then used to condition a single LLM. This design not only mitigates numerical reasoning challenges but also substantially reduces training overhead, yielding models that achieve superior Pareto fronts and robust alignment across complex reward dimensions.
Related papers
- QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)
We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)
Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment [14.541973333460149]
Mixing Preference Optimization (MPO) is a post-processing framework for aggregating single-objective policies.<n>MPO achieves balanced performance across diverse preferences, outperforming existing models with significantly reduced computational costs.
arXiv Detail & Related papers (2025-02-25T23:22:12Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Optimal Design for Reward Modeling in RLHF [83.3614658277817]
We formalize the reward training model in Reinforcement Learning from Human Feedback.
We frame the selection of an effective dataset as a simple regret minimization task.
We derive bounds on the simple regret under appropriate assumptions.
arXiv Detail & Related papers (2024-10-22T14:36:44Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
arXiv Detail & Related papers (2024-02-15T18:58:31Z) - Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization [76.09576643028362]
We present Multi-Objective Direct Preference Optimization (MODPO) for multiple alignment objectives.
MODPO folds language modeling directly into reward modeling, training language models as implicit collective reward models.
It theoretically yields the same optimal solutions as MORLHF but is practically more stable and efficient.
arXiv Detail & Related papers (2023-10-05T17:35:26Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.