OphthBench: A Comprehensive Benchmark for Evaluating Large Language Models in Chinese Ophthalmology
- URL: http://arxiv.org/abs/2502.01243v1
- Date: Mon, 03 Feb 2025 11:04:51 GMT
- Title: OphthBench: A Comprehensive Benchmark for Evaluating Large Language Models in Chinese Ophthalmology
- Authors: Chengfeng Zhou, Ji Wang, Juanjuan Qin, Yining Wang, Ling Sun, Weiwei Dai,
- Abstract summary: Large language models (LLMs) have shown significant promise across various medical applications.
We introduce the OphthBench, a benchmark designed to assess LLM performance within the context of Chinese ophthalmic practices.
This framework allows for a thorough assessment of LLMs' capabilities and provides insights into their practical application in Chinese ophthalmology.
- Score: 7.743511021846898
- License:
- Abstract: Large language models (LLMs) have shown significant promise across various medical applications, with ophthalmology being a notable area of focus. Many ophthalmic tasks have shown substantial improvement through the integration of LLMs. However, before these models can be widely adopted in clinical practice, evaluating their capabilities and identifying their limitations is crucial. To address this research gap and support the real-world application of LLMs, we introduce the OphthBench, a specialized benchmark designed to assess LLM performance within the context of Chinese ophthalmic practices. This benchmark systematically divides a typical ophthalmic clinical workflow into five key scenarios: Education, Triage, Diagnosis, Treatment, and Prognosis. For each scenario, we developed multiple tasks featuring diverse question types, resulting in a comprehensive benchmark comprising 9 tasks and 591 questions. This comprehensive framework allows for a thorough assessment of LLMs' capabilities and provides insights into their practical application in Chinese ophthalmology. Using this benchmark, we conducted extensive experiments and analyzed the results from 39 popular LLMs. Our evaluation highlights the current gap between LLM development and its practical utility in clinical settings, providing a clear direction for future advancements. By bridging this gap, we aim to unlock the potential of LLMs and advance their development in ophthalmology.
Related papers
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
arXiv Detail & Related papers (2024-06-14T11:10:17Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Evaluation of General Large Language Models in Contextually Assessing
Semantic Concepts Extracted from Adult Critical Care Electronic Health Record
Notes [17.648021186810663]
The purpose of this study was to evaluate the performance of Large Language Models (LLMs) in understanding and processing real-world clinical notes.
The GPT family models have demonstrated considerable efficiency, evidenced by their cost-effectiveness and time-saving capabilities.
arXiv Detail & Related papers (2024-01-24T16:52:37Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.