論文の概要: Boosting Graph Robustness Against Backdoor Attacks: An Over-Similarity Perspective
- arxiv url: http://arxiv.org/abs/2502.01272v1
- Date: Mon, 03 Feb 2025 11:41:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:57.170521
- Title: Boosting Graph Robustness Against Backdoor Attacks: An Over-Similarity Perspective
- Title(参考訳): バックドア攻撃に対するグラフロバスト性を高める - オーバーシミラリティの視点から
- Authors: Chang Liu, Hai Huang, Yujie Xing, Xingquan Zuo,
- Abstract要約: グラフニューラルネットワーク(GNN)は、ソーシャルネットワークやトランスポートネットワークなどのタスクにおいて顕著な成功を収めている。
最近の研究は、GNNのバックドア攻撃に対する脆弱性を強調し、現実世界のアプリケーションにおける信頼性に関する重大な懸念を提起している。
そこで我々は,新しいグラフバックドアディフェンス手法SimGuardを提案する。
- 参考スコア(独自算出の注目度): 5.29403129046676
- License:
- Abstract: Graph Neural Networks (GNNs) have achieved notable success in tasks such as social and transportation networks. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, raising significant concerns about their reliability in real-world applications. Despite initial efforts to defend against specific graph backdoor attacks, existing defense methods face two main challenges: either the inability to establish a clear distinction between triggers and clean nodes, resulting in the removal of many clean nodes, or the failure to eliminate the impact of triggers, making it challenging to restore the target nodes to their pre-attack state. Through empirical analysis of various existing graph backdoor attacks, we observe that the triggers generated by these methods exhibit over-similarity in both features and structure. Based on this observation, we propose a novel graph backdoor defense method SimGuard. We first utilizes a similarity-based metric to detect triggers and then employs contrastive learning to train a backdoor detector that generates embeddings capable of separating triggers from clean nodes, thereby improving detection efficiency. Extensive experiments conducted on real-world datasets demonstrate that our proposed method effectively defends against various graph backdoor attacks while preserving performance on clean nodes. The code will be released upon acceptance.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ソーシャルネットワークやトランスポートネットワークなどのタスクにおいて顕著な成功を収めている。
しかし、最近の研究はGNNのバックドア攻撃に対する脆弱性を強調し、現実世界のアプリケーションにおける信頼性に関する重大な懸念を提起している。
特定のグラフバックドア攻撃に対する防御努力にもかかわらず、既存の防御方法は2つの大きな課題に直面している。トリガーとクリーンノードの明確な区別ができないこと、多くのクリーンノードが削除できないこと、トリガーの影響を排除できないこと、ターゲットノードを攻撃前の状態に戻すことが困難である。
既存の各種グラフバックドア攻撃の実証分析により,これらの手法によって引き起こされるトリガは,特徴と構造の両方に相似性を示すことが明らかとなった。
そこで本研究では,新しいグラフバックドア防御手法SimGuardを提案する。
まず、類似度に基づく計量を用いてトリガーを検出し、対照的な学習を用いて、クリーンノードからトリガーを分離できる埋め込みを生成するバックドア検出器を訓練し、検出効率を向上させる。
提案手法は,クリーンノードの性能を保ちながら,様々なグラフバックドア攻撃に対して効果的に防御可能であることを示す。
コードは受理時にリリースされます。
関連論文リスト
- MADE: Graph Backdoor Defense with Masked Unlearning [24.97718571096943]
グラフニューラルネットワーク(GNN)は、グラフ関連タスクの処理能力に優れていたため、研究者から大きな注目を集めている。
最近の研究では、GNNはトレーニングデータセットにトリガを注入することで実装されたバックドア攻撃に対して脆弱であることが示されている。
この脆弱性は、薬物発見のようなセンシティブなドメインにおけるGNNの応用に重大なセキュリティリスクをもたらす。
論文 参考訳(メタデータ) (2024-11-26T22:50:53Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類といったタスクにおいて,有望な結果を達成している。
最近の研究で、GNNはバックドア攻撃に弱いことが判明し、実際の採用に重大な脅威をもたらしている。
本研究では,裏口検出にランダムなエッジドロップを用いることにより,汚染ノードとクリーンノードを効率的に識別できることを理論的に示す。
論文 参考訳(メタデータ) (2024-06-14T08:46:26Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
グラフニューラルネットワーク(GNN)は、様々なタスクにおいて顕著なパフォーマンスを示している。
バックドア攻撃は、トレーニンググラフ内のノードのセットにバックドアトリガとターゲットクラスラベルをアタッチすることで、グラフを汚染する。
本稿では,IDトリガによる無意味なグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2024-05-17T13:09:39Z) - Identifying Backdoored Graphs in Graph Neural Network Training: An Explanation-Based Approach with Novel Metrics [13.93535590008316]
グラフニューラルネットワーク(GNN)は多くのドメインで人気を集めているが、バックドア攻撃に弱い。
グラフレベルの説明を創造的に活用する新しい検出法を考案した。
提案手法は, バックドア攻撃に対するGNNの安全性向上に寄与し, 高い検出性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-03-26T22:41:41Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
特に、バックドアアタックは、トレーニンググラフ内の一連のノードにトリガーとターゲットクラスラベルをアタッチすることで、グラフを毒する。
本稿では,攻撃予算が制限されたグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2023-02-11T01:50:58Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Adversarial Camouflage for Node Injection Attack on Graphs [64.5888846198005]
グラフニューラルネットワーク(GNN)に対するノードインジェクション攻撃は、GNNのパフォーマンスを高い攻撃成功率で低下させる能力のため、近年注目を集めている。
本研究は,これらの攻撃が現実的なシナリオでしばしば失敗することを示す。
これを解決するため,我々はカモフラージュノードインジェクション攻撃(camouflage node Injection attack)に取り組んだ。
論文 参考訳(メタデータ) (2022-08-03T02:48:23Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。