Spectral Entanglement Fingerprinting: A Novel Framework for Ransomware Detection Using Cross-Frequency Anomalous Waveform Signatures
- URL: http://arxiv.org/abs/2502.01275v1
- Date: Mon, 03 Feb 2025 11:46:41 GMT
- Title: Spectral Entanglement Fingerprinting: A Novel Framework for Ransomware Detection Using Cross-Frequency Anomalous Waveform Signatures
- Authors: Dominica Ayanara, Atticus Hillingworth, Jonathan Casselbury, Dominic Montague,
- Abstract summary: Malicious encryption techniques continue to evolve, bypassing conventional detection mechanisms.
Spectral analysis presents an alternative approach that transforms system activity data into the frequency domain.
The proposed Spectral Entanglement Fingerprinting (SEF) framework leverages power spectral densities, coherence functions, and entropy-based metrics to extract hidden patterns.
- Score: 0.0
- License:
- Abstract: Malicious encryption techniques continue to evolve, bypassing conventional detection mechanisms that rely on static signatures or predefined behavioral rules. Spectral analysis presents an alternative approach that transforms system activity data into the frequency domain, enabling the identification of anomalous waveform signatures that are difficult to obfuscate through traditional evasion techniques. The proposed Spectral Entanglement Fingerprinting (SEF) framework leverages power spectral densities, coherence functions, and entropy-based metrics to extract hidden patterns indicative of unauthorized encryption activities. Detection accuracy evaluations demonstrate that frequency-domain transformations achieve superior performance in distinguishing malicious from benign processes, particularly in the presence of polymorphic and metamorphic modifications. Comparative analyses with established methods reveal that frequency-based detection minimizes false positive and false negative rates, ensuring operational efficiency without excessive computational overhead. Experimental results indicate that entropy variations in encrypted data streams provide meaningful classification insights, allowing the differentiation of distinct ransomware families based on spectral characteristics alone. The latency assessment confirms that SEF operates within a time window that enables proactive intervention, mitigating encryption-induced damage before data integrity is compromised. Scalability evaluations suggest that the framework remains effective even under concurrent execution of multiple ransomware instances, supporting its suitability for high-throughput environments.
Related papers
- Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework [0.0]
Monitoring entropy variations offers an alternative approach to identifying unauthorized data modifications.
A framework leveraging hierarchical entropy disruption was introduced to analyze deviations in entropy distributions.
evaluating the framework across multiple ransomware variants demonstrated its capability to achieve high detection accuracy.
arXiv Detail & Related papers (2025-02-12T23:29:06Z) - Neural Encrypted State Transduction for Ransomware Classification: A Novel Approach Using Cryptographic Flow Residuals [0.0]
An approach based on Neural Encrypted State Transduction (NEST) is introduced to analyze cryptographic flow residuals.
NEST maps state transitions dynamically, enabling high-confidence classification without requiring direct access to decrypted execution traces.
arXiv Detail & Related papers (2025-02-07T21:26:51Z) - Hierarchical Entropic Diffusion for Ransomware Detection: A Probabilistic Approach to Behavioral Anomaly Isolation [0.0]
This paper introduces a structured entropy-based anomaly classification mechanism.
It tracks fluctuations in entropy evolution to differentiate between benign cryptographic processes and unauthorized encryption attempts.
It maintains high classification accuracy across diverse ransomware families, outperforming traditional-based and signature-driven approaches.
arXiv Detail & Related papers (2025-02-06T08:55:11Z) - Semantic Entanglement-Based Ransomware Detection via Probabilistic Latent Encryption Mapping [0.0]
Probabilistic Latent Encryption Mapping models encryption behaviors through statistical representations of entropy deviations and probabilistic dependencies in execution traces.
Evaluations demonstrate that entropy-driven classification reduces false positive rates while maintaining high detection accuracy across diverse ransomware families and encryption methodologies.
The ability to systematically infer encryption-induced deviations without requiring static attack signatures strengthens detection against adversarial evasion techniques.
arXiv Detail & Related papers (2025-02-04T21:27:58Z) - Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints [0.0]
The framework combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies.
It effectively distinguishes malicious encryption operations from benign activities while maintaining low false positive rates.
The inclusion of real-time anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection.
arXiv Detail & Related papers (2025-01-25T05:26:17Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain.
We propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF)
Experiment results on several public face forgery datasets demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T08:58:49Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.