論文の概要: Template Matching in Images using Segmented Normalized Cross-Correlation
- arxiv url: http://arxiv.org/abs/2502.01286v1
- Date: Mon, 03 Feb 2025 11:58:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:23.585958
- Title: Template Matching in Images using Segmented Normalized Cross-Correlation
- Title(参考訳): 分割正規化相互相関を用いた画像のテンプレートマッチング
- Authors: Davor Marušić, Siniša Popović, Zoran Kalafatić,
- Abstract要約: 提案アルゴリズムはテンプレート画像近似の事前計算に基づく。
提案アルゴリズムは、無視可能なNCC近似誤差で優れた計算性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, a new variant of an algorithm for normalized cross-correlation (NCC) is proposed in the context of template matching in images. The proposed algorithm is based on the precomputation of a template image approximation, enabling more efficient calculation of approximate NCC with the source image than using the original template for exact NCC calculation. The approximate template is precomputed from the template image by a split-and-merge approach, resulting in a decomposition to axis-aligned rectangular segments, whose sizes depend on per-segment pixel intensity variance. In the approximate template, each segment is assigned the mean grayscale value of the corresponding pixels from the original template. The proposed algorithm achieves superior computational performance with negligible NCC approximation errors compared to the well-known Fast Fourier Transform (FFT)-based NCC algorithm, when applied on less visually complex and/or smaller template images. In other cases, the proposed algorithm can maintain either computational performance or NCC approximation error within the range of the FFT-based algorithm, but not both.
- Abstract(参考訳): 本稿では,画像におけるテンプレートマッチングの文脈において,正規化相互相関(NCC)アルゴリズムの新しい変種を提案する。
提案アルゴリズムはテンプレート画像近似の事前計算に基づいており、元のテンプレートを用いて正確なNCC計算を行うよりも、ソース画像との近似NCCのより効率的な計算を可能にする。
テンプレート画像から近似テンプレートを分割・マージ法によりプリ計算し、その結果、サイズが画素ごとの強度のばらつきに依存する軸方向の長方形セグメントに分解する。
近似テンプレートでは、各セグメントは、対応する画素の平均グレイスケール値を元のテンプレートから割り当てる。
提案アルゴリズムは、より視覚的に複雑な画像やより小さいテンプレート画像に適用した場合、よく知られたFast Fourier Transform (FFT)ベースのNCCアルゴリズムと比較して、無視可能なNCC近似誤差で優れた計算性能を実現する。
他の場合、提案アルゴリズムは、FFTベースのアルゴリズムの範囲内で計算性能またはNCC近似誤差を維持できるが、両方ではない。
関連論文リスト
- A Novel Approach to Threshold Quantum Images by using Unsharp
Measurements [0.8287206589886881]
本研究では、未シャープ測定により、グレースケール画像のしきい値とバイナライズのためのハイブリッド量子アプローチを提案する。
提案手法は、重複するガウスのピークと、隣接する局所ミニマの間の距離を分散として利用する。
得られたしきい値を用いて、しきい値エンコーダと統合された新しい量子画像表現を用いて、グレースケール画像をバイナライズする。
論文 参考訳(メタデータ) (2023-10-16T18:34:40Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Cross-boosting of WNNM Image Denoising method by Directional Wavelet
Packets [2.7648976108201815]
本稿では、方向性準解析ウェーブレットパケット(qWP)と最先端の重み付き核ノルム最小化法(WNNM)を併用した画像復号方式を提案する。
提案手法では, 粗悪な画像においても, エッジや微細なテクスチャパターンをキャプチャするqWPdn機能を結合する。
論文 参考訳(メタデータ) (2022-06-09T11:37:46Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Anisotropic Mesh Adaptation for Image Segmentation Based on Mumford-Shah
Functional [0.0]
マンフォード-シャー汎関数に基づく偏微分方程式(PDE)モデルを解くことにより画像分割を考える。
画像表現のための異方性メッシュ適応とPDEモデルを解く有限要素法を組み合わせた新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-07-17T00:00:31Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Across-scale Process Similarity based Interpolation for Image
Super-Resolution [9.289846887298852]
「プロセス類似性を利用して計算した高周波信号成分の注入により行う技術」を提案する。
本研究では, 離散ウェーブレット (DWT) と定常ウェーブレット (SWT) 変換を用いて, 画像の詳細と近似を生成する分解値を求める。
提案手法はCPU時間において最速であり,同等の結果が得られた。
論文 参考訳(メタデータ) (2020-03-20T10:39:46Z) - Adaptive binarization based on fuzzy integrals [7.4836284046629995]
本論文は,ファジィ積分のための改良SATの効率的な設計により,ファジィ積分画像に基づく適応バイナライズ手法を提案する。
実験結果から,提案手法は従来のアルゴリズムやサリエンシニューラルネットワークよりも画像品質の閾値付けが優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-04T18:30:57Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。