XR-VIO: High-precision Visual Inertial Odometry with Fast Initialization for XR Applications
- URL: http://arxiv.org/abs/2502.01297v1
- Date: Mon, 03 Feb 2025 12:17:51 GMT
- Title: XR-VIO: High-precision Visual Inertial Odometry with Fast Initialization for XR Applications
- Authors: Shangjin Zhai, Nan Wang, Xiaomeng Wang, Danpeng Chen, Weijian Xie, Hujun Bao, Guofeng Zhang,
- Abstract summary: This paper presents a novel approach to Visual Inertial Odometry (VIO) focusing on the initialization and feature matching modules.
Existing methods for gyroscopes often suffer from poor stability in visual Structure from Motion (SfM) or in solving a huge number of parameters simultaneously.
By tightly coupling measurements, we enhance the robustness and accuracy of visual SfM.
In terms of feature matching, we introduce a hybrid method that combines optical flow and descriptor-based matching.
- Score: 34.2082611110639
- License:
- Abstract: This paper presents a novel approach to Visual Inertial Odometry (VIO), focusing on the initialization and feature matching modules. Existing methods for initialization often suffer from either poor stability in visual Structure from Motion (SfM) or fragility in solving a huge number of parameters simultaneously. To address these challenges, we propose a new pipeline for visual inertial initialization that robustly handles various complex scenarios. By tightly coupling gyroscope measurements, we enhance the robustness and accuracy of visual SfM. Our method demonstrates stable performance even with only four image frames, yielding competitive results. In terms of feature matching, we introduce a hybrid method that combines optical flow and descriptor-based matching. By leveraging the robustness of continuous optical flow tracking and the accuracy of descriptor matching, our approach achieves efficient, accurate, and robust tracking results. Through evaluation on multiple benchmarks, our method demonstrates state-of-the-art performance in terms of accuracy and success rate. Additionally, a video demonstration on mobile devices showcases the practical applicability of our approach in the field of Augmented Reality/Virtual Reality (AR/VR).
Related papers
- Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.
It tackles the challenges posed by spatial sparsity and motion sensitivity in events.
It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras [33.81592783496106]
Event-based visual odometry aims at solving tracking and mapping subproblems (typically in parallel)
We build an event-based stereo visual-inertial odometry system on top of a direct pipeline.
The resulting system scales well with modern high-resolution event cameras.
arXiv Detail & Related papers (2024-10-12T05:35:27Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
arXiv Detail & Related papers (2024-07-15T15:18:28Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments.
Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, in a unified reference frame.
Our implementation's research-based Python API is publicly available on GitHub.
arXiv Detail & Related papers (2023-06-02T19:52:13Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Towards Fast, Accurate and Stable 3D Dense Face Alignment [73.01620081047336]
We propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability.
We present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving.
arXiv Detail & Related papers (2020-09-21T15:37:37Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
This paper proposes a robust solution to achieve accurate estimation and consistent track-ability for dynamic multi-body visual odometry.
A compact and effective framework is proposed leveraging recent advances in semantic instance-level segmentation and accurate optical flow estimation.
A novel formulation, jointly optimizing SE(3) motion and optical flow is introduced that improves the quality of the tracked points and the motion estimation accuracy.
arXiv Detail & Related papers (2020-07-28T05:12:56Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.