Deep generative computed perfusion-deficit mapping of ischaemic stroke
- URL: http://arxiv.org/abs/2502.01334v1
- Date: Mon, 03 Feb 2025 13:14:31 GMT
- Title: Deep generative computed perfusion-deficit mapping of ischaemic stroke
- Authors: Chayanin Tangwiriyasakul, Pedro Borges, Guilherme Pombo, Stefano Moriconi, Michael S. Elmalem, Paul Wright, Yee-Haur Mah, Jane Rondina, Robert Gray, Sebastien Ourselin, Parashkev Nachev, M. Jorge Cardoso,
- Abstract summary: Focal deficits in ischaemic stroke result from impaired perfusion downstream of a critical vascular occlusion.
The underlying pattern of disrupted perfusion provides information upstream of the lesion, potentially yielding earlier predictive and localizing signals.
Analysing computed perfusion maps from 1,393 CTA-imaged-patients with acute ischaemic stroke.
Deep generative inference could power highly expressive models of functional anatomical relations in ischaemic stroke within the pre-interventional window.
- Score: 1.097320368843718
- License:
- Abstract: Focal deficits in ischaemic stroke result from impaired perfusion downstream of a critical vascular occlusion. While parenchymal lesions are traditionally used to predict clinical deficits, the underlying pattern of disrupted perfusion provides information upstream of the lesion, potentially yielding earlier predictive and localizing signals. Such perfusion maps can be derived from routine CT angiography (CTA) widely deployed in clinical practice. Analysing computed perfusion maps from 1,393 CTA-imaged-patients with acute ischaemic stroke, we use deep generative inference to localise neural substrates of NIHSS sub-scores. We show that our approach replicates known lesion-deficit relations without knowledge of the lesion itself and reveals novel neural dependents. The high achieved anatomical fidelity suggests acute CTA-derived computed perfusion maps may be of substantial clinical-and-scientific value in rich phenotyping of acute stroke. Using only hyperacute imaging, deep generative inference could power highly expressive models of functional anatomical relations in ischaemic stroke within the pre-interventional window.
Related papers
- Learning to Predict Global Atrial Fibrillation Dynamics from Sparse Measurements [71.49601301663651]
FibMap is a graph recurrent neural network model that reconstructs global AF dynamics from sparse measurements.
Trained and validated on 51 non-contact whole atria recordings, FibMap reconstructs whole atria dynamics from 10% surface coverage.
Clinical utility of FibMap is demonstrated on real-world contact mapping recordings, achieving reconstruction fidelity comparable to non-contact mapping.
arXiv Detail & Related papers (2025-02-13T16:36:25Z) - Quantitative perfusion maps using a novelty spatiotemporal convolutional
neural network [13.188103532542797]
This study presents a perfusion parameters estimation network that considers spatial and temporal information.
The results indicate that the network can accurately estimate perfusion parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), and time to maximum of the residual function (Tmax)
The proposed model also maintains time efficiency, closely approaching the performance of commercial gold-standard software.
arXiv Detail & Related papers (2023-12-08T09:22:25Z) - Deep Variational Lesion-Deficit Mapping [0.3914676152740142]
We introduce a comprehensive framework for lesion-deficit model comparison.
We show that our model outperforms established methods by a substantial margin across all simulation scenarios.
Our analysis justifies the widespread adoption of this approach.
arXiv Detail & Related papers (2023-05-27T13:49:35Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Estimating Cardiac Tissue Conductivity from Electrograms with Fully
Convolutional Networks [0.0]
Atrial Fibrillation (AF) is characterized by disorganised electrical activity in the atria.
Estimating the effective conductivity of myocardium and identifying regions of abnormal propagation is crucial for the effective treatment of AF.
arXiv Detail & Related papers (2022-12-06T14:37:59Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Evaluation of Interpretability for Deep Learning algorithms in EEG
Emotion Recognition: A case study in Autism [4.752074022068791]
Current models on Explainable Artificial Intelligence (XAI) have shown an evident and quantified lack of reliability for measuring feature-relevance.
This study is the first to consolidate a more transparent feature-relevance calculation for a successful EEG-based facial emotion recognition.
arXiv Detail & Related papers (2021-11-25T18:28:29Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Geometric Uncertainty in Patient-Specific Cardiovascular Modeling with
Convolutional Dropout Networks [0.0]
We propose a novel approach to generate samples from the conditional distribution of patient-specific cardiovascular models.
Key innovation introduced in the proposed approach is the ability to learn geometric uncertainty directly from training data.
arXiv Detail & Related papers (2020-09-16T00:13:12Z) - Simultaneous Skull Conductivity and Focal Source Imaging from EEG
Recordings with the help of Bayesian Uncertainty Modelling [77.34726150561087]
We propose a statistical method based on the Bayesian approximation error approach to compensate for source imaging errors due to the unknown skull conductivity.
Results indicate clear improvements in the source localization accuracy and feasible skull conductivity estimates.
arXiv Detail & Related papers (2020-01-31T21:33:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.