Trajectory World Models for Heterogeneous Environments
- URL: http://arxiv.org/abs/2502.01366v1
- Date: Mon, 03 Feb 2025 13:59:08 GMT
- Title: Trajectory World Models for Heterogeneous Environments
- Authors: Shaofeng Yin, Jialong Wu, Siqiao Huang, Xingjian Su, Xu He, Jianye Hao, Mingsheng Long,
- Abstract summary: Heterogeneity in sensors and actuators across environments poses a significant challenge to building large-scale pre-trained world models.
We introduce UniTraj, a unified dataset comprising over one million trajectories from 80 environments, designed to scale data while preserving critical diversity.
We propose TrajWorld, a novel architecture capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context.
- Score: 67.27233466954814
- License:
- Abstract: Heterogeneity in sensors and actuators across environments poses a significant challenge to building large-scale pre-trained world models on top of this low-dimensional sensor information. In this work, we explore pre-training world models for heterogeneous environments by addressing key transfer barriers in both data diversity and model flexibility. We introduce UniTraj, a unified dataset comprising over one million trajectories from 80 environments, designed to scale data while preserving critical diversity. Additionally, we propose TrajWorld, a novel architecture capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context. Pre-training TrajWorld on UniTraj demonstrates significant improvements in transition prediction and achieves a new state-of-the-art for off-policy evaluation. To the best of our knowledge, this work, for the first time, demonstrates the transfer benefits of world models across heterogeneous and complex control environments.
Related papers
- A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.
This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions.
One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments.
We propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency.
arXiv Detail & Related papers (2024-12-09T11:40:54Z) - One-shot World Models Using a Transformer Trained on a Synthetic Prior [37.027893127637036]
One-Shot World Model (OSWM) is a transformer world model that is learned in an in-context learning fashion from purely synthetic data.
OSWM is able to quickly adapt to the dynamics of a simple grid world, as well as the CartPole gym and a custom control environment.
arXiv Detail & Related papers (2024-09-21T09:39:32Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning [18.651307543537655]
We propose a novel model-based multi-agent reinforcement learning approach named Value Decomposition Framework with Disentangled World Model.
We present experimental results in Easy, Hard, and Super-Hard StarCraft II micro-management challenges to demonstrate that our method achieves high sample efficiency and exhibits superior performance in defeating the enemy armies compared to other baselines.
arXiv Detail & Related papers (2023-09-08T22:12:43Z) - Stronger Generalization Guarantees for Robot Learning by Combining
Generative Models and Real-World Data [5.935761705025763]
We provide a framework for providing generalization guarantees by leveraging a finite dataset of real-world environments.
We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities.
arXiv Detail & Related papers (2021-11-16T20:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.