論文の概要: Compact Rule-Based Classifier Learning via Gradient Descent
- arxiv url: http://arxiv.org/abs/2502.01375v1
- Date: Mon, 03 Feb 2025 14:13:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:19.619461
- Title: Compact Rule-Based Classifier Learning via Gradient Descent
- Title(参考訳): グラディエントDescentによるコンパクトルールベース分類器学習
- Authors: Javier Fumanal-Idocin, Raquel Fernandez-Peralta, Javier Andreu-Perez,
- Abstract要約: 透明性と説明責任のある意思決定を必要とするシナリオにおいて、ルールベースのモデルは重要な役割を果たす。
そこで本研究では,規則の最大数と長さをユーザが制御できる,勾配降下法を用いて学習した新しいルールベース分類器を提案する。
数値的なパーティションの場合、ユーザはファジィセットで使用されるパーティションを制御できる。
- 参考スコア(独自算出の注目度): 0.7874708385247353
- License:
- Abstract: Rule-based models play a crucial role in scenarios that require transparency and accountable decision-making. However, they primarily consist of discrete parameters and structures, which presents challenges for scalability and optimization. In this work, we introduce a new rule-based classifier trained using gradient descent, in which the user can control the maximum number and length of the rules. For numerical partitions, the user can also control the partitions used with fuzzy sets, which also helps keep the number of partitions small. We perform a series of exhaustive experiments on $40$ datasets to show how this classifier performs in terms of accuracy and rule base size. Then, we compare our results with a genetic search that fits an equivalent classifier and with other explainable and non-explainable state-of-the-art classifiers. Our results show how our method can obtain compact rule bases that use significantly fewer patterns than other rule-based methods and perform better than other explainable classifiers.
- Abstract(参考訳): 透明性と説明責任のある意思決定を必要とするシナリオにおいて、ルールベースのモデルは重要な役割を果たす。
しかし、それらは主に独立したパラメータと構造で構成されており、スケーラビリティと最適化の課題を提示している。
そこで本研究では,規則の最大数と長さをユーザが制御できる,勾配降下法を用いて学習した新しいルールベース分類器を提案する。
数値的なパーティションの場合、ユーザはファジィセットで使用されるパーティションを制御できる。
40ドルのデータセットで一連の徹底的な実験を行い、この分類器が精度とルールベースサイズでどのように機能するかを示す。
そして,本研究の結果を,等価な分類器と説明不能で説明不能な分類器に適合する遺伝的検索と比較した。
提案手法は,他のルールベース手法よりもはるかに少ないパターンを多用し,説明可能な分類器よりも優れた性能を有する,コンパクトなルールベースが得られることを示す。
関連論文リスト
- Achieving More with Less: A Tensor-Optimization-Powered Ensemble Method [53.170053108447455]
アンサンブル学習(英: Ensemble learning)は、弱い学習者を利用して強力な学習者を生み出す方法である。
我々は、マージンの概念を活かした滑らかで凸な目的関数を設計し、強力な学習者がより差別的になるようにした。
そして、我々のアルゴリズムを、多数のデータセットの10倍の大きさのランダムな森林や他の古典的な手法と比較する。
論文 参考訳(メタデータ) (2024-08-06T03:42:38Z) - Obtaining Explainable Classification Models using Distributionally
Robust Optimization [12.511155426574563]
特徴値規則の集合を用いて構築した一般化線形モデルについて検討する。
ルールセットの間隔と予測精度の間には、固有のトレードオフが存在する。
我々はこれらの競合する要因に同時に対処するルールセットの集合を学習するための新しい定式化を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:45:34Z) - Learning Interpretable Rules for Scalable Data Representation and
Classification [11.393431987232425]
ルールベースのLearner Representation (RRL)は、データ表現と分類のための解釈可能な非ファジィ規則を学習する。
RRLは容易に調整でき、異なるシナリオの分類精度とモデルの複雑さのトレードオフを得ることができる。
論文 参考訳(メタデータ) (2023-10-22T15:55:58Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
一致したクラス先行は、オラクルの上界性能と強く相関していることを示す。
また,NLPタスクに対するプロンプト設定において,一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2023-09-10T10:57:41Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
本稿では,継続的学習のための適応型分類基準を用いた教師付きコントラスト学習フレームワークを提案する。
実験により, CFLは最先端の性能を達成し, 分類基準に比べて克服する能力が強いことが示された。
論文 参考訳(メタデータ) (2023-05-20T19:22:40Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
本稿では,文脈認識型分類器の学習を通じて文脈ヒントを利用する。
本手法はモデルに依存しないため,ジェネリックセグメンテーションモデルにも容易に適用できる。
無視できる追加パラメータと+2%の推論時間だけで、小型モデルと大型モデルの両方で十分な性能向上が達成されている。
論文 参考訳(メタデータ) (2023-03-21T07:00:35Z) - Efficient Learning of Interpretable Classification Rules [34.27987659227838]
本稿では,命題論理で表現可能な分類規則に対して,最大満足度(MaxSAT)に基づく解釈可能な学習フレームワークIMLIを提案する。
我々の実験では,IMLIは予測精度,解釈可能性,スケーラビリティの最良のバランスを達成している。
論文 参考訳(メタデータ) (2022-05-14T00:36:38Z) - Determination of class-specific variables in nonparametric
multiple-class classification [0.0]
確率に基づく非パラメトリックな多重クラス分類法を提案し、それを個々のクラスに対して高い影響変数を識別する能力と統合する。
提案手法の特性を報告し, 合成データと実データの両方を用いて, 異なる分類条件下での特性を説明する。
論文 参考訳(メタデータ) (2022-05-07T10:08:58Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Scalable Rule-Based Representation Learning for Interpretable
Classification [12.736847587988853]
ルールベースのLearner Representation (RRL)は、データ表現と分類のための解釈可能な非ファジィ規則を学習する。
RRLは容易に調整でき、異なるシナリオの分類精度とモデルの複雑さのトレードオフを得ることができる。
論文 参考訳(メタデータ) (2021-09-30T13:07:42Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。