論文の概要: Learning Interpretable Rules for Scalable Data Representation and
Classification
- arxiv url: http://arxiv.org/abs/2310.14336v3
- Date: Tue, 30 Jan 2024 03:21:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 18:40:16.600467
- Title: Learning Interpretable Rules for Scalable Data Representation and
Classification
- Title(参考訳): スケーラブルなデータ表現と分類のための学習解釈可能なルール
- Authors: Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang
- Abstract要約: ルールベースのLearner Representation (RRL)は、データ表現と分類のための解釈可能な非ファジィ規則を学習する。
RRLは容易に調整でき、異なるシナリオの分類精度とモデルの複雑さのトレードオフを得ることができる。
- 参考スコア(独自算出の注目度): 11.393431987232425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rule-based models, e.g., decision trees, are widely used in scenarios
demanding high model interpretability for their transparent inner structures
and good model expressivity. However, rule-based models are hard to optimize,
especially on large data sets, due to their discrete parameters and structures.
Ensemble methods and fuzzy/soft rules are commonly used to improve performance,
but they sacrifice the model interpretability. To obtain both good scalability
and interpretability, we propose a new classifier, named Rule-based
Representation Learner (RRL), that automatically learns interpretable non-fuzzy
rules for data representation and classification. To train the
non-differentiable RRL effectively, we project it to a continuous space and
propose a novel training method, called Gradient Grafting, that can directly
optimize the discrete model using gradient descent. A novel design of logical
activation functions is also devised to increase the scalability of RRL and
enable it to discretize the continuous features end-to-end. Exhaustive
experiments on ten small and four large data sets show that RRL outperforms the
competitive interpretable approaches and can be easily adjusted to obtain a
trade-off between classification accuracy and model complexity for different
scenarios. Our code is available at: https://github.com/12wang3/rrl.
- Abstract(参考訳): 規則に基づくモデル、例えば決定木は、透明な内部構造と優れたモデル表現性のために高いモデル解釈性を必要とするシナリオで広く使われている。
しかし、ルールベースのモデルは、特に大きなデータセットでは、個々のパラメータや構造のために最適化が難しい。
アンサンブルメソッドとファジィ/ソフトルールは一般的にパフォーマンスを改善するために使用されるが、モデルの解釈性を犠牲にしている。
スケーラビリティと解釈性の両方を得るために,データ表現と分類のための解釈不能なルールを自動的に学習する,ルールベース表現学習器(rrl)という新しい分類器を提案する。
非微分可能rrlを効果的に訓練するために、連続空間に投影し、勾配降下を用いて離散モデルを直接最適化できる勾配グラフトと呼ばれる新しい訓練方法を提案する。
論理アクティベーション関数の新たな設計は、RRLのスケーラビリティを高め、エンドツーエンドで連続的な特徴を識別できるようにするためにも考案されている。
10個の小さなデータセットと4つの大きなデータセットの探索実験により、RRLは競争的解釈可能なアプローチよりも優れており、異なるシナリオにおける分類精度とモデルの複雑さのトレードオフを得るために容易に調整できることを示した。
私たちのコードは以下の通りです。
関連論文リスト
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Deep Explainable Learning with Graph Based Data Assessing and Rule
Reasoning [4.369058206183195]
本稿では、ノイズハンドリングにおけるディープモデルの利点とエキスパートルールに基づく解釈可能性を組み合わせたエンドツーエンドのディープ・ツー・エンドのディープ・説明可能な学習手法を提案する。
提案手法は, 工業生産システムにおいて, 予測精度に匹敵し, より高い一般化安定性, より優れた解釈可能性を示す。
論文 参考訳(メタデータ) (2022-11-09T05:58:56Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Scalable Rule-Based Representation Learning for Interpretable
Classification [12.736847587988853]
ルールベースのLearner Representation (RRL)は、データ表現と分類のための解釈可能な非ファジィ規則を学習する。
RRLは容易に調整でき、異なるシナリオの分類精度とモデルの複雑さのトレードオフを得ることができる。
論文 参考訳(メタデータ) (2021-09-30T13:07:42Z) - Understanding Dynamics of Nonlinear Representation Learning and Its
Application [12.697842097171119]
暗黙的非線形表現学習のダイナミクスについて検討する。
我々は,データ構造アライメント条件がグローバル収束に十分であることを示す。
我々はデータ構造アライメント条件を満たす新しいトレーニングフレームワークを作成した。
論文 参考訳(メタデータ) (2021-06-28T16:31:30Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
ラーニング・ツー・ランクのモデルの解釈可能性は、非常に重要でありながら、比較的過小評価されている研究分野である。
解釈可能なランキングモデルの最近の進歩は、主に既存のブラックボックスランキングモデルに対するポストホックな説明の生成に焦点を当てている。
一般化加法モデル(GAM)をランキングタスクに導入することにより,本質的に解釈可能な学習 to ランクの基盤を築いた。
論文 参考訳(メタデータ) (2020-05-06T01:51:30Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。